Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Med ; 12(20): 20365-20379, 2023 10.
Article in English | MEDLINE | ID: mdl-37795578

ABSTRACT

INTRODUCTION: Long noncoding RNAs (lncRNAs) play crucial roles in regulating various hallmarks in cancers. Triple-negative (Estrogen receptor, ER; Human epidermal growth factor receptor 2, HER2; Progesterone receptor, PR) breast cancer (TNBC) is the most aggressive form of breast cancers with a poor prognosis and no available molecular targeted therapy. METHODS: We reviewed the current literature on the roles of lncRNAs in the pathogenesis, therapy resistance, and prognosis of patients with TBNC. RESULTS: LncRNAs are associated with TNBC pathogenesis, therapy resistance, and prognosis. For example, lncRNAs such as small nucleolar RNA host gene 12 (SNHG12), highly upregulated in liver cancer (HULC) HOX transcript antisense intergenic RNA (HOTAIR), lincRNA-regulator of reprogramming (LincRNA-ROR), etc., are aberrantly expressed in TNBC and are involved in the pathogenesis of the disease. LncRNAs act as a decoy, scaffold, or sponge to regulate the expression of genes, miRNAs, and transcription factors associated with pathogenesis and progression of TNBC. Moreover, lncRNAs such as ferritin heavy chain 1 pseudogene 3 (FTH1P3), BMP/OP-responsive gene (BORG) contributes to the therapy resistance property of TNBC through activating ABCB1 (ATP-binding cassette subfamily B member 1) drug efflux pumps by increasing DNA repair capacity or by inducing signaling pathway involved in therapeutic resistance. CONCLUSION: In this review, we outline the functions of various lncRNAs along with their molecular mechanisms involved in the pathogenesis, therapeutic resistance of TBNC. Also, the prognostic implications of lncRNAs in patients with TNBC is illustrated. Moreover, potential strategies targeting lncRNAs against highly aggressive TNBC is discussed in this review.


Subject(s)
MicroRNAs , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Triple Negative Breast Neoplasms/pathology , MicroRNAs/genetics , Prognosis , Gene Expression Regulation, Neoplastic
2.
Cancer Med ; 12(4): 4367-4379, 2023 02.
Article in English | MEDLINE | ID: mdl-36207986

ABSTRACT

Estrogens have been implicated in the pathogenesis of various cancer types, including colorectal carcinoma (CRC). Estrogen receptors such as ERα and ERß activate intracellular signaling cascades followed by binding to estrogen, resulting in important changes in cellular behaviors. The nuclear estrogen receptors, i.e. ERß and ERα are responsible for the genomic actions of estrogens, whereas the other receptor, such as G protein-coupled estrogen receptor (GPER) regulates rapid non-genomic actions, which lead to secondary gene expression changes in cells. ERß, the predominant estrogen receptor expressed in both normal and non-malignant colonic epithelium, has protective roles in colon carcinogenesis. ERß may exert the anti-tumor effect through selective activation of pro-apoptotic signaling, increasing DNA repair, inhibiting expression of oncogenes, regulating cell cycle progression, and also by changing the micro-RNA pool and DNA-methylation. Thus, a better understanding of the underlying mechanisms of estrogen and its receptors in CRC pathogenesis could provide a new horizon for effective therapeutic development. Furthermore, using synthetic or natural compounds as ER agonists may induce estrogen-mediated anti-cancer activities against colon cancer. In this study, we report the most recent pre-clinical and experimental evidences related to ERs in CRC development. Also, we reviewed the actions of naturally occurring and synthetic compounds, which have a protective role against CRC development by acting as ER agonist.


Subject(s)
Colorectal Neoplasms , Receptors, Estrogen , Humans , Receptors, Estrogen/metabolism , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Colorectal Neoplasms/genetics , Receptors, G-Protein-Coupled/metabolism
3.
Cancers (Basel) ; 12(11)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126409

ABSTRACT

Anaplastic thyroid cancer (ATC) remains as one of the most aggressive human carcinomas with poor survival rates in patients with the cancer despite therapeutic interventions. Novel targeted and personalized therapies could solve the puzzle of poor survival rates of patients with ATC. In this review, we discuss the role of non-coding RNAs in the regulation of gene expression in ATC as well as how the changes in their expression could potentially reshape the characteristics of ATCs. A broad range of miRNA, such as miR-205, miR-19a, miR-17-3p and miR-17-5p, miR-618, miR-20a, miR-155, etc., have abnormal expressions in ATC tissues and cells when compared to those of non-neoplastic thyroid tissues and cells. Moreover, lncRNAs, such as H19, Human leukocyte antigen (HLA) complex P5 (HCP5), Urothelial carcinoma-associated 1 (UCA1), Nuclear paraspeckle assembly transcript 1 (NEAT1), etc., participate in transcription and post-transcriptional regulation of gene expression in ATC cells. Dysregulations of these non-coding RNAs were associated with development and progression of ATC by modulating the functions of oncogenes during tumour progression. Thus, restoration of the abnormal expression of these miRNAs and lncRNAs may serve as promising ways to treat the patients with ATC. In addition, siRNA mediated inhibition of several oncogenes may act as a potential option against ATC. Thus, non-coding RNAs can be useful as prognostic biomarkers and potential therapeutic targets for the better management of patients with ATC.

4.
Cells ; 9(6)2020 06 03.
Article in English | MEDLINE | ID: mdl-32503256

ABSTRACT

Cancer stem cells (CSCs) are the main culprits involved in therapy resistance and disease recurrence in colorectal carcinoma (CRC). Results using cell culture, animal models and tissues from patients with CRC suggest the indispensable roles of colorectal CSCs in therapeutic failure. Conventional therapies target proliferating and mature cancer cells, while CSCs are mostly quiescent and poorly differentiated, thereby they can easily survive chemotherapeutic insults. The aberrant activation of Wnt/ß-catenin, Notch, Hedgehog, Hippo/YAP (Yes-associated protein) and phosphatidylinositol 3-kinase/protein kinase B facilitates CSCs with excessive self-renewal and therapy resistance property in CRC. CSCs survive the chemo-radiotherapies by escaping therapy mediated DNA damage via altering the cell cycle checkpoints, increasing DNA damage repair capacity and by an efficient scavenging of reactive oxygen species. Furthermore, dysregulations of miRNAs e.g., miR-21, miR-93, miR-203, miR-215, miR-497 etc., modulate the therapeutic sensitivity of colorectal CSCs by regulating growth and survival signalling. In addition, a reversible quiescent G0 state and the re-entering cell cycle capacity of colorectal CSCs can accelerate tumour regeneration after treatment. Moreover, switching to favourable metabolic signatures during a therapeutic regimen will add more complexity in therapeutic outcomes against CSCs. Therapeutic strategies targeting these underlying mechanisms of CSCs' therapy resistance could provide a promising outcome, however, deep understanding and concerted research are necessary to design novel therapies targeting CSCs. To conclude, the understanding of these mechanisms of CSC in CRC could lead to the improved management of patients with CRC.


Subject(s)
Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Drug Resistance, Neoplasm , Neoplastic Stem Cells/pathology , Animals , Colorectal Neoplasms/genetics , DNA Damage , Drug Resistance, Neoplasm/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplastic Stem Cells/metabolism , Signal Transduction
5.
Stem Cell Rev Rep ; 16(2): 397-412, 2020 04.
Article in English | MEDLINE | ID: mdl-31965409

ABSTRACT

In embryonic development and throughout life, there are some cells can exhibit phenotypic plasticity. Phenotypic plasticity is the ability of cells to differentiate into multiple lineages. In normal development, plasticity is highly regulated whereas cancer cells re-activate this dynamic ability for their own progression. The re-activation of these mechanisms enables cancer cells to acquire a cancer stem cell (CSC) phenotype- a subpopulation of cells with increased ability to survive in a hostile environment and resist therapeutic insults. There are several contributors fuel CSC plasticity in different stages of disease progression such as a complex network of tumour stroma, epidermal microenvironment and different sub-compartments within tumour. These factors play a key role in the transformation of tumour cells from a stable condition to a progressive state. In addition, flexibility in the metabolic state of CSCs helps in disease progression. Moreover, epigenetic changes such as chromatin, DNA methylation could stimulate the phenotypic change of CSCs. Development of resistance to therapy due to highly plastic behaviour of CSCs is a major cause of treatment failure in cancers. However, recent studies explored that plasticity can also expose the weaknesses in CSCs, thereby could be utilized for future therapeutic development. Therefore, in this review, we discuss how cancer cells acquire the plasticity, especially the role of the normal developmental process, tumour microenvironment, and epigenetic changes in the development of plasticity. We further highlight the therapeutic resistance property of CSCs attributed by plasticity. Also, outline some potential therapeutic options against plasticity of CSCs. Graphical Abstract .


Subject(s)
Cell Plasticity , Disease Progression , Drug Resistance, Neoplasm , Neoplastic Stem Cells/pathology , Cell Plasticity/genetics , Drug Resistance, Neoplasm/genetics , Epigenesis, Genetic , Humans , Neoplastic Stem Cells/metabolism , Tumor Microenvironment/genetics
6.
Front Oncol ; 10: 598957, 2020.
Article in English | MEDLINE | ID: mdl-33665161

ABSTRACT

Cancer stem cells (CSCs) in esophageal cancer have a key role in tumor initiation, progression and therapy resistance. Novel therapeutic strategies to target CSCs are being tested, however, more in-depth research is necessary. Eradication of CSCs can result in successful therapeutic approaches against esophageal cancer. Recent evidence suggests that targeting signaling pathways, miRNA expression profiles and other properties of CSCs are important strategies for cancer therapy. Wnt/ß-catenin, Notch, Hedgehog, Hippo and other pathways play crucial roles in proliferation, differentiation, and self-renewal of stem cells as well as of CSCs. All of these pathways have been implicated in the regulation of esophageal CSCs and are potential therapeutic targets. Interference with these pathways or their components using small molecules could have therapeutic benefits. Similarly, miRNAs are able to regulate gene expression in esophageal CSCs, so targeting self-renewal pathways with miRNA could be utilized to as a potential therapeutic option. Moreover, hypoxia plays critical roles in esophageal cancer metabolism, stem cell proliferation, maintaining aggressiveness and in regulating the metastatic potential of cancer cells, therefore, targeting hypoxia factors could also provide effective therapeutic modalities against esophageal CSCs. To conclude, additional study of CSCs in esophageal carcinoma could open promising therapeutic options in esophageal carcinomas by targeting hyper-activated signaling pathways, manipulating miRNA expression and hypoxia mechanisms in esophageal CSCs.

7.
Mol Diagn Ther ; 24(1): 69-83, 2020 02.
Article in English | MEDLINE | ID: mdl-31758333

ABSTRACT

Reactivation of the stem cell programme in breast cancer is significantly associated with persistent cancer progression and therapeutic failure. Breast cancer stem cells (BCSCs) are involved in the process of breast cancer initiation, metastasis and cancer relapse. Among the various important cues found in the formation and progression of BCSCs, microRNAs (miRNAs or miRs) play a pivotal role by regulating the expression of various tumour suppressor genes or oncogenes. Accordingly, there is evidence that miRNAs are associated with BCSC self-renewal, differentiation, invasion, metastasis and therapy resistance, and therefore cancer recurrence. miRNAs execute their roles by regulating the expression of stemness markers, activation of signalling pathways or their components and regulation of transcription networks in BCSCs. Therefore, a better understanding of the association between BCSCs and miRNAs has the potential to help design more effective and safer therapeutic solutions against breast cancer. Thus, an miRNA-based therapeutic strategy may open up new horizons for the treatment of breast cancer in the future. In view of this, we present the progress to date of miRNA research associated with stemness marker expression, signalling pathways and activation of transcription networks to regulate the self-renewal, differentiation and therapy resistance properties of BCSCs.


Subject(s)
Breast Neoplasms/genetics , MicroRNAs/genetics , Neoplastic Stem Cells/metabolism , Apoptosis/genetics , Biomarkers, Tumor , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Disease Susceptibility , Female , Gene Expression Regulation, Neoplastic , Gene Regulatory Networks , Humans , Phenotype , RNA Interference , Signal Transduction , Transcription Factors/metabolism , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...