Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ADMET DMPK ; 10(3): 180-196, 2022.
Article in English | MEDLINE | ID: mdl-36131891

ABSTRACT

Antibiotic-resistant Escherichia coli infection of poultry causes significant economic losses. Extended spectrum ß lactamases (ESBL) producing E. coli was inoculated in a broiler, Rhode Island Red and Haringhata Black birds orally at 56×108 c.f.u. mL-1 for induction of diarrhoea. Pharmacokinetics of ceftriaxone-tazobactam combination (8:1) was studied following a single intramuscular injection at 28.125 mg kg-1 and the combination was administered twice daily to treat such infection. Plasma concentration of both ceftriaxone persisted up to 8 h in experimental birds and maintained an approximate ratio of 8:1 with tazobactam for a period of 2 h, 0.25 h and 0.75 h, respectively in a broiler, Rhode Island Red and Haringhata Black birds. The K el was significantly lower in all experimental birds compared to healthy birds. Efficacy study was conducted in diarrhoeic birds by administration of ceftriaxone-tazobactam combination at 28.125 mg kg-1 body weight twice daily intramuscularly for three days which caused an increase in specific antibody titre in the broiler on 5th day and in Rhode Island Red birds 10th day. However, Haringhata black birds were inherently showed more resistance towards the infection. The combination of ceftriaxone and tazobactam in the ratio of 8:1 can be an effective treatment to combat ESBL producing E. coli infections.

2.
Chem Commun (Camb) ; 57(89): 11815-11818, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34693946

ABSTRACT

Well-defined and air-stable PN3-pincer manganese(II) complexes were synthesized and used for the hydrogenation of aldehydes into alcohols under mild conditions using MeOH as a solvent. This protocol is applicable for a wide range of aldehydes containing various functional groups. Importantly, α,ß-unsaturated aldehydes, including ynals, are hydrogenated with the CC double bond/CC triple bond intact. Our methodology was demonstrated for the conversion of biomass derived feedstocks such as furfural and 5-formylfurfural to furfuryl alcohol and 5-(hydroxymethyl)furfuryl alcohol respectively.

3.
Inorg Chem ; 60(16): 12392-12404, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34319113

ABSTRACT

A water-soluble strapped iron(III)tetraarylporphyrin (FeIIIPor-1) bearing two propylpyridinium groups at the side chains and a carboxylic acid group at the overhanging position of the strap was synthesized to mimic the function of myoglobin with the distal polar functionality in aqueous solution. FeIIIPor-1 forms a stable 1:1 inclusion complex with a per-O-methylated ß-cyclodextrin dimer having a pyridine linker (Py3OCD), providing a hydrophobic environment and a proximal fifth ligand to stabilize the O2-complex. The ferrous complex (FeIIPorCD-1) binds both O2 and CO in aqueous solution. The O2 and CO binding affinities (P1/2O2 and P1/2CO) and half-life time (t1/2) of the O2 complex of FeIIPorCD-1 are 6.3 and 0.021 Torr, and 7 h, respectively, at pH 7 and 25 °C. The control compound without the strap structure (FeIIPorCD-2) has similar oxygen binding characteristics (P1/2O2 = 8.0 Torr), but much higher CO binding affinity (P1/2CO = 3.8 × 10-4 Torr), and longer t1/2 (30 h). The O2 and CO kinetics indicate that the strapped structure in FeIIPorCD-1 inhibits the entrance of these gaseous ligands into the iron(II) center, as evidenced by lower konO2 and konCO values. Interestingly, the CO complex of FeIIPorCD-1 is significantly destabilized (relatively larger koffCO), while the koffO2 value is much smaller than that of FeIIPorCD-2, resulting in significantly increased O2/CO selectivity (reduced M value, where M = P1/2O2/P1/2CO = 320) in FeIIPorCD-1 compared to FeIIPorCD-2 (M = 21000).


Subject(s)
Biomimetic Materials/chemistry , Carbon Monoxide/chemistry , Cyclodextrins/chemistry , Myoglobin/chemistry , Oxygen/chemistry , Porphyrins/chemistry , Water/chemistry , Hydrogen-Ion Concentration , Solutions , Temperature
4.
Inorg Chem ; 60(2): 614-622, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33236627

ABSTRACT

Water oxidation is a primary step in natural as well as artificial photosynthesis to convert renewable solar energy into chemical energy/fuels. Electrocatalytic water oxidation to evolve O2, utilizing suitable low-cost catalysts and renewable electricity, is of fundamental importance considering contemporary energy and environmental issues, yet it is kinetically challenging owing to the complex multiproton/electron transfer processes. Herein, we report the first cobalt-based pincer catalyst for catalytic water oxidation at neutral pH with high efficiency under electrochemical conditions. Most importantly, ligand (pseudo)aromaticity is identified to play an important role during electrocatalysis. A significant potential jump (∼300 mV) was achieved toward a lower positive value when the aromatized cobalt complex was transformed into a (pseudo)dearomatized cobalt species. The dearomatized species catalyzes the water oxidation reaction to evolve oxygen at a much lower overpotential (∼340 mV) on the basis of the onset potential (at a current density of 0.5 mA/cm2) of catalysis at pH 10.5, outperforming other Co-based molecular catalysts reported to date. These observations may provide a new strategy for the judicious design of earth-abundant transition-metal-based water oxidation catalysts.

5.
J Am Chem Soc ; 141(13): 5073-5077, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30866627

ABSTRACT

Formally ferric carbonyl adducts are reported in a series of thiolate-bound iron porphyrins. Resonance Raman data indicate the presence of both Fe-S and Fe-CO bonds, and EPR data of this S = 1/2 species indicate a ligand-based electron hole, giving this complex an Fe(II)-thiyl radical electronic ground state. The FTIR data show that the C-O vibrations are substantially higher than in the corresponding ferrous-thiolate CO adducts. DFT calculations reproduce the spectroscopic features and indicate that backbonding to the low lying π* orbitals of the bound CO stabilizes the Fe 3d orbitals resulting in a stabilization of the ferrous-thiyl radical ground state compared to the five-coordinate ferric-thiolate precursor complexes. Access to stable thiyl radicals will help understand these elusive species that are mostly encountered as short-lived reactive reaction intermediates.

6.
Avian Dis ; 59(2): 249-54, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26473675

ABSTRACT

With the aim of assessing the antigenic characteristics of a circulating pool of fowlpox virus (FPV) that exists in the backyard poultry system in India, one of the field isolates generated was characterized by in vitro immunologic techniques. FPV was isolated from clinically positive fowlpox cases (n  =  10) from the Jhargram (West Midnapur district) and Kakdwip (South 24 Pargana district) areas of West Bengal State, India. Initially, FPV-specific PCR was performed for confirmation of the samples. Isolation of FPV was done using embryonated chicken eggs and the choreoallantoic membrane route. Subsequently, FPV antigen was prepared from chicken embryo fibroblast cell culture-adapted field isolate. Biologic transmission of FPV was performed in Rhode Island red chickens experimentally to assess humoral and cell-mediated immune (CMI) responses. High level of anti-FPV antibodies were observed in test birds as assessed by indirect ELISA. Seroreactive polypeptides (B-cell antigens) of FPV antigen with molecular weights of 44.5, 66.5, 75, 90.5, and 99 kDa were detected by western blot analysis. Significant increases in CMI responses were observed in inoculated chickens as assessed by lymphocyte proliferation assay, cytotoxicity assay, and T-cell immunoblotting. The predominant T-cell antigen of FPV detected had a molecular weight of 66.5 kDa. The present study revealed the antigenic characteristics of FPV that exists in backyard poultry system in West Bengal for the first time, thus exploring the rationality of designing future T- and B-cell vaccines against fowlpox.


Subject(s)
Antigens, Viral/immunology , B-Lymphocytes/physiology , Chickens , Fowlpox virus/metabolism , Fowlpox/immunology , T-Lymphocytes/physiology , Animals , Antigens, Viral/metabolism , Fowlpox/epidemiology , India/epidemiology
7.
Avian Dis ; 58(1): 39-45, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24758111

ABSTRACT

This study was undertaken to observe the prevalence, serogroup, avian pathogenic Escherichia coli (APEC)-associated virulence gene, randomly amplified polymorphic DNA (RAPD) pattern, and antibiotic resistance genes of E. coli in backyard layers and their environment in India. From the 360 samples of healthy layers and their environment, 272 (75.5%) E. coli were isolated. The majority (28.67%) of them were untypeable. Among the studied virulence genes (papC, tsh, iucC, astA), 52 (14.32%) isolates were found to possess astA, including the isolates from the drinking water of the birds (4/272, 1.47%). These strains belonged to 18 different serogroups. Most of the isolates were typeable by RAPD and they produced different patterns. Phenotypic resistance of the isolates was most frequently observed to erythromycin (95.83%), chloramphenicol (87.52%), and cotrimoxazole (78.26%). None of the isolates was found to possess extended-spectrum beta-lactamases (bla(TEM), bla(SHV), bla(CTX-M) or quinolone resistance (qnrA) genes by PCR. The present study was the first attempt in India to assess APEC distribution in backyard poultry production.


Subject(s)
Chickens , Drug Resistance, Bacterial , Escherichia coli Infections/veterinary , Escherichia coli/genetics , Escherichia coli/pathogenicity , Poultry Diseases/microbiology , Virulence Factors/genetics , Animals , Climate , Escherichia coli/isolation & purification , Escherichia coli/metabolism , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Female , Housing, Animal , Humans , India/epidemiology , Molecular Sequence Data , Poultry Diseases/epidemiology , Prevalence , Random Amplified Polymorphic DNA Technique/veterinary , Sequence Analysis, DNA/veterinary , Serotyping/veterinary , Virulence Factors/metabolism
8.
Antimicrob Agents Chemother ; 52(3): 1080-93, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18056276

ABSTRACT

The emergence of antimony (Sb) resistance has jeopardized the treatment of visceral leishmaniasis in various countries. Previous studies have considered the part played by leishmanial parasites in antimony resistance, but the involvement of host factors in the clinical scenario remained to be investigated. Here we show that unlike infection with Sb-sensitive (Sbs) Leishmania donovani, infection with Sb-resistant (Sb r) L. donovani induces the upregulation of multidrug resistance-associated protein 1 (MRP1) and permeability glycoprotein (P-gp) in host cells, resulting in a nonaccumulation of intracellular Sb following treatment with sodium antimony gluconate (SAG) favoring parasite replication. The inhibition of MRP1 and P-gp with resistance-modifying agents such as lovastatin allows Sb accumulation and parasite killing within macrophages and offers protection in an animal model in which infection with Sb r L. donovani is otherwise lethal. The occurrence of a similar scenario in clinical cases is supported by the findings that unlike monocytes from SAG-sensitive kala-azar (KA) patients, monocytes from SAG-unresponsive KA patients overexpress P-gp and MRP1 and fail to accumulate Sb following in vitro SAG treatment unless pretreated with inhibitors of ABC transporters. Thus, the expression status of MRP1 and P-gp in blood monocytes may be used as a diagnostic marker for Sb resistance and the treatment strategy can be designed accordingly. Our results also indicate that lovastatin, which can inhibit both P-gp and MRP1, might be beneficial for reverting Sb resistance in leishmaniasis as well as drug resistance in other clinical situations, including cancer.


Subject(s)
ATP-Binding Cassette Transporters/antagonists & inhibitors , Antimony Sodium Gluconate/pharmacology , Antiprotozoal Agents/pharmacology , Drug Resistance , Leishmania donovani/drug effects , ATP-Binding Cassette Transporters/metabolism , Animals , Cell Line, Tumor , Cricetinae , Humans , India , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/parasitology , Macrophages, Peritoneal/parasitology , Mesocricetus , Mice , Mice, Inbred BALB C , Multidrug Resistance-Associated Proteins/antagonists & inhibitors , Multidrug Resistance-Associated Proteins/metabolism
9.
Filaria J ; 4(1): 11, 2005 Nov 07.
Article in English | MEDLINE | ID: mdl-16274474

ABSTRACT

BACKGROUND: In the absence of intermediate animal hosts, the process of embryogenesis leading to fecundity of adult female filarial worms is very critical for persistence of these obligate parasites in human communities. Embryogenesis in adult female filarial parasites involves fertilization of eggs or oocytes by sperms and their subsequent development into motile microfilariae inside the uterine cavity of worms. Development of assays for monitoring embryogenesis in adult female worms is a critical requirement in filariasis research--filarial worms are known to harbour endosymbionts such as Wolbachia which play a significant role in fecundity. Tetracycline or doxycycline treatment of the infected hosts effectively eliminates the endosymbionts resulting in inhibition of embryogenesis in female worms. Currently, inhibition of embryogenesis in adult filarial worms can be monitored only by microscopic examination of in vitro harvested intrauterine stages. METHODS: Adult female filarial worms of bovine filarial parasites, Setaria digitata were collected from the peritoneum of infected animals and intrauterine stages were harvested in culture medium and were analyzed for forward and side scatter by flowcytometry using a BD FACS Calibur. Different populations were gated, sorted and identified by phase microscopy. Binding of biotinylated lectins to intra uterine stages was monitored using FITC labeled Avidin and monitored by flow cytometry of gated populations. Similarly, binding of antibodies in human filarial sera to intrauterine stages was monitored using FITC labeled anti-human immunoglobulins. RESULTS: The forward and side scatter for intrauterine stages delineated 3 distinct populations labeled as R1, R2 and R3. The three populations were sorted and identified to be a) fully stretched microfilariae, b) early and c) late developmental stages of eggs respectively. Lectins such as Wheat Germ agglutinin or Concanavalin-A were found to bind strongly to egg stages and less prominently to intra-uterine microfilariae. Similarly the binding of antibodies in filarial sera to the three intra-uterine stages could also be precisely quantified. CONCLUSION: The manuscript reports a novel flow cytometry based method to monitor progression of embryogenesis in adult filarial worms. Apart from relative quantification of different intra uterine developmental stages, the assay allows quantitative binding of lectins and antibodies to each of the intrauterine stages. It may now be possible to quantify levels of antibodies in infected and immune hosts to monitor anti-fecundity immunity in filariasis--the assay can thus be used as a powerful tool for drug development and in immunological studies in human and experimental filariasis.

SELECTION OF CITATIONS
SEARCH DETAIL
...