Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Biol Med ; 163: 107182, 2023 09.
Article in English | MEDLINE | ID: mdl-37379615

ABSTRACT

Over the last couple of decades, the introduction and proliferation of whole-slide scanners led to increasing interest in the research of digital pathology. Although manual analysis of histopathological images is still the gold standard, the process is often tedious and time consuming. Furthermore, manual analysis also suffers from intra- and interobserver variability. Separating structures or grading morphological changes can be difficult due to architectural variability of these images. Deep learning techniques have shown great potential in histopathology image segmentation that drastically reduces the time needed for downstream tasks of analysis and providing accurate diagnosis. However, few algorithms have clinical implementations. In this paper, we propose a new deep learning model Dense Dilated Multiscale Supervised Attention-Guided (D2MSA) Network for histopathology image segmentation that makes use of deep supervision coupled with a hierarchical system of novel attention mechanisms. The proposed model surpasses state-of-the-art performance while using similar computational resources. The performance of the model has been evaluated for the tasks of gland segmentation and nuclei instance segmentation, both of which are clinically relevant tasks to assess the state and progress of malignancy. Here, we have used histopathology image datasets for three different types of cancer. We have also performed extensive ablation tests and hyperparameter tuning to ensure the validity and reproducibility of the model performance. The proposed model is available at www.github.com/shirshabose/D2MSA-Net.


Subject(s)
Image Processing, Computer-Assisted , Neoplasms , Humans , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Algorithms , Neoplasms/diagnostic imaging , Observer Variation
2.
Comput Biol Med ; 143: 105274, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35123135

ABSTRACT

Biomedical image segmentation is essential for computerized medical image analysis. Deep learning algorithms allow us to design state-of-the-art models for solving segmentation problems. The U-Net and its variants have provided positive results across various datasets. However, the existing networks have the same receptive field at each level and the models are supervised only at the shallow level. Considering these two ideas, we have proposed the D3MSU-Net where the field of view in each level is varied depending upon the depth of the resolution layer and the model is supervised at each resolution level. We have evaluated our network in eight benchmark datasets such as Electron Microscopy, Lung segmentation, Montgomery Chest X-ray, Covid-Radiopaedia, Wound, Medetec, Brain MRI, and Covid-19 lung CT dataset. Additionally, we have provided the performance for various ablations. The experimental results show the superiority of the proposed network. The proposed D3MSU-Net and ablation models are available at www.github.com/shirshabose/D3MSUNET.

SELECTION OF CITATIONS
SEARCH DETAIL
...