Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 28(10): 2554-2566.e7, 2019 Sep 03.
Article in English | MEDLINE | ID: mdl-31484068

ABSTRACT

Optimizing direct electrical stimulation for the treatment of neurological disease remains difficult due to an incomplete understanding of its physical propagation through brain tissue. Here, we use network control theory to predict how stimulation spreads through white matter to influence spatially distributed dynamics. We test the theory's predictions using a unique dataset comprising diffusion weighted imaging and electrocorticography in epilepsy patients undergoing grid stimulation. We find statistically significant shared variance between the predicted activity state transitions and the observed activity state transitions. We then use an optimal control framework to posit testable hypotheses regarding which brain states and structural properties will efficiently improve memory encoding when stimulated. Our work quantifies the role that white matter architecture plays in guiding the dynamics of direct electrical stimulation and offers empirical support for the utility of network control theory in explaining the brain's response to stimulation.


Subject(s)
Models, Neurological , Neural Pathways/physiology , White Matter/physiology , Adult , Electric Stimulation , Female , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...