Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(3): e0298863, 2024.
Article in English | MEDLINE | ID: mdl-38530829

ABSTRACT

Advancing human induced pluripotent stem cell derived cardiomyocyte (hiPSC-CM) technology will lead to significant progress ranging from disease modeling, to drug discovery, to regenerative tissue engineering. Yet, alongside these potential opportunities comes a critical challenge: attaining mature hiPSC-CM tissues. At present, there are multiple techniques to promote maturity of hiPSC-CMs including physical platforms and cell culture protocols. However, when it comes to making quantitative comparisons of functional behavior, there are limited options for reliably and reproducibly computing functional metrics that are suitable for direct cross-system comparison. In addition, the current standard functional metrics obtained from time-lapse images of cardiac microbundle contraction reported in the field (i.e., post forces, average tissue stress) do not take full advantage of the available information present in these data (i.e., full-field tissue displacements and strains). Thus, we present "MicroBundleCompute," a computational framework for automatic quantification of morphology-based mechanical metrics from movies of cardiac microbundles. Briefly, this computational framework offers tools for automatic tissue segmentation, tracking, and analysis of brightfield and phase contrast movies of beating cardiac microbundles. It is straightforward to implement, runs without user intervention, requires minimal input parameter setting selection, and is computationally inexpensive. In this paper, we describe the methods underlying this computational framework, show the results of our extensive validation studies, and demonstrate the utility of exploring heterogeneous tissue deformations and strains as functional metrics. With this manuscript, we disseminate "MicroBundleCompute" as an open-source computational tool with the aim of making automated quantitative analysis of beating cardiac microbundles more accessible to the community.


Subject(s)
Induced Pluripotent Stem Cells , Humans , Myocytes, Cardiac , Cell Culture Techniques , Cell Differentiation
2.
Am J Physiol Heart Circ Physiol ; 323(4): H738-H748, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36053751

ABSTRACT

After a myocardial infarction (MI), the heart undergoes changes including local remodeling that can lead to regional abnormalities in mechanical and electrical properties, ultimately increasing the risk of arrhythmias and heart failure. Although these responses have been successfully recapitulated in animal models of MI, local changes in tissue and cell-level mechanics caused by MI remain difficult to study in vivo. Here, we developed an in vitro cardiac microtissue (CMT) injury system that through acute focal injury recapitulates aspects of the regional responses seen following an MI. With a pulsed laser, cell death was induced in the center of the microtissue causing a loss of calcium signaling and a complete loss of contractile function in the injured region and resulting in a 39% reduction in the CMT's overall force production. After 7 days, the injured area remained void of cardiomyocytes (CMs) and showed increased expression of vimentin and fibronectin, two markers for fibrotic remodeling. Interestingly, although the injured region showed minimal recovery, calcium amplitudes in uninjured regions returned to levels comparable with control. Furthermore, overall force production returned to preinjury levels despite the lack of contractile function in the injured region. Instead, uninjured regions exhibited elevated contractile function, compensating for the loss of function in the injured region, drawing parallels to changes in tissue-level mechanics seen in vivo. Overall, this work presents a new in vitro model to study cardiac tissue remodeling and electromechanical changes after injury.NEW & NOTEWORTHY We report an in vitro cardiac injury model that uses a high-powered laser to induce regional cell death and a focal fibrotic response within a human-engineered cardiac microtissue. The model captures the effects of acute injury on tissue response, remodeling, and electromechanical recovery in both the damaged region and surrounding healthy tissue, modeling similar changes to contractile function observed in vivo following myocardial infarction.


Subject(s)
Fibronectins , Myocardial Infarction , Animals , Calcium/metabolism , Disease Models, Animal , Fibronectins/metabolism , Humans , Myocytes, Cardiac/metabolism , Ventricular Remodeling , Vimentin/metabolism
3.
Sci Adv ; 7(42): eabh3995, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34652945

ABSTRACT

Progressive loss of cardiac systolic function in arrhythmogenic cardiomyopathy (ACM) has recently gained attention as an important clinical consideration in managing the disease. However, the mechanisms leading to reduction in cardiac contractility are poorly defined. Here, we use CRISPR gene editing to generate human induced pluripotent stem cells (iPSCs) that harbor plakophilin-2 truncating variants (PKP2tv), the most prevalent ACM-linked mutations. The PKP2tv iPSC­derived cardiomyocytes are shown to have aberrant action potentials and reduced systolic function in cardiac microtissues, recapitulating both the electrical and mechanical pathologies reported in ACM. By combining cell micropatterning with traction force microscopy and live imaging, we found that PKP2tvs impair cardiac tissue contractility by destabilizing cell-cell junctions and in turn disrupting sarcomere stability and organization. These findings highlight the interplay between cell-cell adhesions and sarcomeres required for stabilizing cardiomyocyte structure and function and suggest fundamental pathogenic mechanisms that may be shared among different types of cardiomyopathies.

4.
Tissue Eng Part A ; 27(23-24): 1447-1457, 2021 12.
Article in English | MEDLINE | ID: mdl-33979548

ABSTRACT

Gap closure is a dynamic process in wound healing, in which a wound contracts and a provisional matrix is laid down, to restore structural integrity to injured tissues. The efficiency of wound closure has been found to depend on the shape of a wound, and this shape dependence has been echoed in various in vitro studies. While wound shape itself appears to contribute to this effect, it remains unclear whether the alignment of the surrounding extracellular matrix (ECM) may also contribute. In this study, we investigate the role both wound curvature and ECM alignment have on gap closure in a 3D culture model of fibrous tissue. Using microfabricated flexible micropillars positioned in rectangular and octagonal arrangements, seeded 3T3 fibroblasts embedded in a collagen matrix formed microtissues with different ECM alignments. Wounding these microtissues with a microsurgical knife resulted in wounds with different shapes and curvatures that closed at different rates. Observing different regions around the wounds, we noted local wound curvature did not impact the rate of production of provisional fibronectin matrix assembled by the fibroblasts. Instead, the rate of provisional matrix assembly was lowest emerging from regions of high fibronectin alignment and highest in the areas of low matrix alignment. Our data suggest that the underlying ECM structure affects the shape of the wound as well as the ability of fibroblasts to build provisional matrix, an important step in the process of tissue closure and restoration of tissue architecture. The study highlights an important interplay between ECM alignment, wound shape, and tissue healing that has not been previously recognized and may inform approaches to engineer tissues. Impact statement Current models of tissue growth have identified a role for curvature in driving provisional matrix assembly. However, most tissue repair occurs in fibrous tissues with different levels of extracellular matrix (ECM) alignment. Here, we show how this underlying ECM alignment may affect the ability of fibroblasts to build new provisional matrix, with implications for in vivo wound healing and providing insight for engineering of new tissues.


Subject(s)
Extracellular Matrix , Fibronectins , Extracellular Matrix/chemistry , Fibroblasts , Wound Healing
5.
Biomed Opt Express ; 12(3): 1339-1350, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33796357

ABSTRACT

The inherent constraints on resolution, speed and field of view have hindered the development of high-speed, three-dimensional microscopy techniques over large scales. Here, we present a multiplane line-scan imaging strategy, which uses a series of axially distributed reflecting slits to probe different depths within a sample volume. Our technique enables the simultaneous imaging of an optically sectioned image stack with a single camera at frame rates of hundreds of hertz, without the need for axial scanning. We demonstrate the applicability of our system to monitor fast dynamics in biological samples by performing calcium imaging of neuronal activity in mouse brains and voltage imaging of cardiomyocytes in cardiac samples.

6.
iScience ; 23(4): 100974, 2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32299055

ABSTRACT

Precise measurement of action potentials (APs) is needed to observe electrical activity and cellular communication within cardiac tissue. Voltage-sensitive dyes (VSDs) are traditionally used to measure cardiac APs; however, they require acute chemical addition that prevents chronic imaging. Genetically encoded voltage indicators (GEVIs) enable long-term studies of APs without the need of chemical additions, but current GEVIs used in cardiac tissue exhibit poor kinetics and/or low signal to noise (SNR). Here, we demonstrate the use of Archon1, a recently developed GEVI, in hiPSC-derived cardiomyocytes (CMs). When expressed in CMs, Archon1 demonstrated fast kinetics comparable with patch-clamp electrophysiology and high SNR significantly greater than the VSD Di-8-ANEPPS. Additionally, Archon1 enabled monitoring of APs across multiple cells simultaneously in 3D cardiac tissues. These results highlight Archon1's capability to investigate the electrical activity of CMs in a variety of applications and its potential to probe functionally complex in vitro models, as well as in vivo systems.

7.
Radiat Res ; 182(1): 18-34, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24937778

ABSTRACT

Space missions beyond the protection of Earth's magnetosphere expose astronauts to an environment that contains ionizing proton radiation. The hazards that proton radiation pose to normal tissues, such as the central nervous system (CNS), are not fully understood, although it has been shown that proton radiation affects the neurogenic environment, killing neural precursors and altering behavior. To determine the time and dose-response characteristics of the CNS to whole-body proton irradiation, C57BL/6J mice were exposed to 1 GeV/n proton radiation at doses of 0-200 cGy and behavioral, physiological and immunohistochemical end points were analyzed over a range of time points (48 h-12 months) postirradiation. These experiments revealed that proton radiation exposure leads to: 1. an acute decrease in cell division within the dentate gyrus of the hippocampus, with significant differences detected at doses as low as 10 cGy; 2. a persistent effect on proliferation in the subgranular zone, at 1 month postirradiation; 3. a decrease in neurogenesis at doses as low as 50 cGy, at 3 months postirradiation; and 4. a decrease in hippocampal ICAM-1 immunoreactivity at doses as low as 10 cGy, at 1 month postirradiation. The data presented contribute to our understanding of biological responses to whole-body proton radiation and may help reduce uncertainty in the assessment of health risks to astronauts. These findings may also be relevant to clinical proton beam therapy.


Subject(s)
Brain/radiation effects , Protons/adverse effects , Whole-Body Irradiation/adverse effects , Animals , Behavior, Animal/radiation effects , Brain/cytology , Cell Proliferation/radiation effects , Dose-Response Relationship, Radiation , Female , Inflammation/etiology , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/radiation effects , Space Flight
SELECTION OF CITATIONS
SEARCH DETAIL
...