Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Biosci ; 9: 934401, 2022.
Article in English | MEDLINE | ID: mdl-35813812

ABSTRACT

Citrus black spot (CBS) is a disease caused by the fungus Phyllosticta citricarpa that affects citrus plants, causing fruit blemish and premature drop that result in severe economic losses in commercial citrus orchards. However, CBS symptoms and effects may vary depending on the citrus species: Citrus limon (lemon) is susceptible and highly affected by the disease, while no CBS-related damage has ever been observed for Citrus latifolia (Tahiti lime), implying that it must be resistant to the disease. The difference in the response to this disease provided the opportunity to gain insight into the metabolites responsible for the resistance by comparison of the metabolomic profiles of these two citrus species. Metabolic variations of C. limon and C. latifolia inoculated with P. citricarpa were analyzed using various metabolomic-based platforms including 1H NMR for overall metabolic profiling, and LC-MS and HPTLC for targeted analysis. The 1H NMR spectra of the samples demonstrated that certain phenolics were strongly induced after pathogenic inoculation, especially in the resistant species. The induced phenolics were identified from C. latifolia by further 1H NMR, LCMS and HPTLC analysis yielding six prenylated and methoxy coumarins, i.e., 5,7-dimethoxycoumarin, 5-geranyloxy-7-methoxycoumarin, 7-geranyloxycoumarin, 8-methoxypsoralen, 5,8-dimethoxypsoralen and 5-geranyloxypsoralen. These isolated coumarins and a coumarin-rich fraction were tested against the fungal pathogen, P. citricarpa, to evaluate their activity. None of the individual coumarins exhibited a significant inhibition, while the coumarin fraction exhibited a strong antifungal activity suggesting a synergistic interaction of its components. To obtain further insight into the roles of these compounds in the plant defense, the possible mechanisms of the individual coumarins were tested using an in-silico model, the PASS Online Tool; the analysis showed that each coumarin appeared to have a unique defense mechanism, even with very slight variations in the chemical structures. The results could provide evidence of the existence of a complex plant defense mechanism consisting in a multitude of synergistic interactions between compounds.

2.
Sci Rep ; 10(1): 11799, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678230

ABSTRACT

Essential oils are volatile compounds commonly used by several industries, easily degradable, which restrains their applications. Therefore, we developed and validated a methodology for producing microcapsules loaded with orange essential oil, using a spray-drying process. The experimental design results showed that the combination between a low flow transfer rate (0.15 L h-1) of the colloidal suspension, a higher drying air flow rate (536 L h-1), and an inlet air temperature of 150 °C to the spray-dryer were the most important parameters for the atomization efficiency. The method optimization resulted in microcapsules with powder recovery between 7.6 and 79.9% (w w-1), oil content ranging from 8.9 to 90.4% (w w-1), encapsulation efficiency between 5.7 and 97.0% (w w-1), and particle sizes with a high frequency of distribution less than 4 µm. In these experiments, gelatin and lignin were evaluated as biopolymers of encapsulation. We also developed an analytical method using headspace gas chromatography. The matrix effects could be addressed by using matrix-matched calibration curves. The chromatographic analysis was linear and selective for D-limonene between 0.025 and 3.00 µg mL-1, with correlation coefficients higher than 0.99. The analytical method had limits of detection and quantitation of 0.024 and 0.073 mg g-1 for gelatin and 0.039 and 0.119 mg g-1 for lignin, respectively.

3.
Braz J Microbiol ; 51(3): 1169-1175, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32189177

ABSTRACT

Papain-like cysteine proteases (PLCPs) in plants are essential to prevent phytopathogen invasion. In order to search for cysteine protease inhibitors and to investigate compounds that could be associated to pineapple Fusarium disease, a chemistry investigation was performed on Fusarium proliferatum isolated from Ananas comosus (pineapple) and cultivated in Czapek medium. From F. proliferatum extracts, nine secondary metabolites were isolated and characterized by nuclear magnetic resonance spectroscopy and mass spectrometry experiments: beauvericin (1), fusaric acid (2), N-ethyl-3-phenylacetamide (3), N-acetyltryptamine (4), cyclo(L-Val-L-Pro) cyclodipeptide (5), cyclo(L-Leu-L-Pro) cyclodipeptide (6), cyclo(L-Leu-L-Pro) diketopiperazine (7), 2,4-dihydroxypyrimidine (8), and 1H-indole-3-carbaldehyde (9). Compounds 1, 3, and 6 showed significant inhibition of papain, with IC50 values of 25.3 ± 1.9, 39.4 ± 2.5, and 7.4 ± 0.5 µM, respectively. Compound 1 also showed significant inhibition against human cathepsins V and B with IC50 of 46.0 ± 3.0 and 6.8 ± 0.7 µM, respectively. The inhibition of papain by mycotoxins (fusaric acid and beauvericin) may indicate a mechanism of Fusarium in the roles of infection process.


Subject(s)
Ananas/enzymology , Cysteine Proteases/chemistry , Cysteine Proteinase Inhibitors/chemistry , Fusarium/chemistry , Mycotoxins/chemistry , Plant Proteins/chemistry , Ananas/chemistry , Ananas/microbiology , Cysteine Proteinase Inhibitors/metabolism , Fusarium/metabolism , Kinetics , Mass Spectrometry , Mycotoxins/metabolism , Secondary Metabolism
4.
Rapid Commun Mass Spectrom ; 34 Suppl 3: e8745, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32053855

ABSTRACT

RATIONALE: Xylella fastidiosa causes citrus variegated chlorosis (CVC) in sweet orange trees. A diagnostic method for detecting CVC before the symptoms appear, which would inform citrus producers in advance about when the plant should be removed from the orchard, is essential for reducing pesticide application costs. METHODS: Chemometrics was applied to high-performance liquid chromatography diode array detector (HPLC-DAD) data to evaluate the similarities and differences between the chromatographic profiles. A liquid chromatography/atmospheric pressure chemical ionization mass spectrometry selected reaction monitoring (LC/APCI-MS-SRM) method was developed to identify the major compounds and to determine their amounts in all samples. RESULTS: We evaluated the effect of this bacterium on the variation in the chemical profile in citrus plants. The organs of C. sinensis grafted on C. limonia were analyzed. Chemometrics was applied to the obtained data, and two major groups were differentiated. Flavonoids were observed in one group (leaves) and coumarins in the second (roots), both at higher concentrations in the plants with CVC symptoms than in those without the symptoms and those in the negative control. The rootstocks also interfered in the metabolism of the scion. CONCLUSIONS: The developed LC/APCI-MS-SRM method for detecting CVC before the symptoms appear is simple and accurate. It is inexpensive, and many samples can be screened per hour using 1 mg of leaves. Knowledge of the influence of the rootstock on the chemical profile of the graft is limited. This study demonstrates the effect of the rootstock in synthesizing flavonoids and increasing its content in all parts of the graft.


Subject(s)
Citrus sinensis/chemistry , Citrus sinensis/microbiology , Plant Diseases/microbiology , Tandem Mass Spectrometry/methods , Cheminformatics , Chromatography, High Pressure Liquid , Coumarins/analysis , Disease Resistance , Plant Breeding/methods , Plant Leaves/chemistry , Plant Leaves/microbiology , Plant Roots/chemistry , Plant Roots/microbiology , Plant Stems/chemistry , Plant Stems/microbiology , Xylella/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL
...