Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Braz J Microbiol ; 55(1): 343-355, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38066229

ABSTRACT

Sulfonamide derivatives have numerous pharmaceutical applications having antiviral, antibacterial, antifungal, antimalarial, anticancer, and antidepressant activities. The structural flexibility of sulfonamide derivatives makes them an excellent candidate for the development of new multi-target agents, although long-time exposure to sulfonamide drugs results in many toxic impacts on human health. However, sulfonamides may be functionalized for developing less toxic and more competent drugs. In this work, sulfonamides including Sulfapyridine (a), Sulfathiazole (b), Sulfamethoxazole (c), and Sulfamerazine (d) are used to synthesize Schiff bases of 7-hydroxy-4-methyl-2-oxo-2H-chromene-8-carbalde-hyde (1a-1d). The synthesized compounds were spectroscopically characterized and tested against hospital isolates of three Gram-positive (Methicillin-resistant Staphylococcus aureus PH217, Ampicillin-resistant Coagulase-negative Staphylococcus aureus, multidrug-resistant (MDR) Enterococcus faecalis PH007R) and two Gram-negative bacteria (multidrug-resistant Escherichia coli, and Salmonella enterica serovar Typhi), compared to the quality control strains from ATCC (S. aureus 29213, E. faecalis 25922, E. coli 29212) and MTCC (S. Typhi 734). Two of the four Schiff bases 1a and 1b are found to be more active than their counterpart 1c and 1d; while 1a have showed significant activity by inhibiting MRSA PH217 and MDR isolates of E. coli at the minimum inhibitory concentration (MIC) of 150 µg/mL and 128 µg/mL with MBC of 1024 µg/mL, respectively. On the other hand, the MIC of 1b was 150 µg/mL against both S. aureus ATCC 29213 and Salmonella Typhi MTCC 734, compared to the control antibiotics Ampicillin and Gentamycin. Scanning electron microscopy demonstrated the altered surface structure of bacterial cells as a possible mechanism of action, supported by the in-silico molecular docking analysis.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcus aureus , Humans , Molecular Docking Simulation , Chromones/pharmacology , Escherichia coli , Schiff Bases/pharmacology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Sulfanilamide , Ampicillin/pharmacology , Sulfonamides/pharmacology , Microbial Sensitivity Tests
2.
3 Biotech ; 13(7): 245, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37361241

ABSTRACT

Nucleoside analogues acyclovir, valaciclovir, and famciclovir are the preferred drugs against human Herpes Simplex Viruses (HSVs). However, the viruses rapidly develop resistance against these analogues which demand safer, more efficient, and nontoxic antiviral agents. We have synthesized two non-nucleoside amide analogues, 2-Oxo-2H-chromene-3-carboxylic acid [2-(pyridin-2-yl methoxy)-phenyl]-amide (HL1) and 2-hydroxy-1-naphthaldehyde-(4-pyridine carboxylic) hydrazone (HL2). The compounds were characterized by different physiochemical methods including elementary analysis, FT-IR, Mass spectra, 1H-NMR; and evaluated for their antiviral efficacy against HSV-1F by Plaque reduction assay. The 50% cytotoxicity (CC50), determined by MTT test, revealed that HL1 (270.4 µg/ml) and HL2 (362.6 µg/ml) are safer, while their antiviral activity (EC50) against HSV-1F was 37.20 µg/ml and 63.4 µg/ml against HL1 and HL2 respectively, compared to the standard antiviral drug Acyclovir (CC50 128.8 ± 3.4; EC50 2.8 ± 0.1). The Selectivity Index (SI) of these two compounds are also promising (4.3 for HL1 and 9.7 for HL2), compared to Acyclovir (49.3). Further study showed that these amide derivatives block the early stage of the HSV-1F life cycle. Additionally, both these amides make the virus inactive, and reduce the number of plaques, when infected Vero cells were exposed to HL1 and HL2 for a short period of time. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03658-0.

3.
Arch Virol ; 166(8): 2187-2198, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34041610

ABSTRACT

Stephania hernandifolia (Nimukho), an ethnomedicinal herb from rural Bengal, has been used traditionally for the management of nerve, skin, urinary, and digestive ailments. Here, we attempted to confirm the antiviral potential of aqueous, methanol, and chloroform extracts of S. hernandifolia against herpes simplex virus type 1 (HSV-1), the causative agent of orolabial herpes in humans, and decipher its underlying mechanism of action. The bioactive extract was standardized and characterized by gas chromatography-mass spectroscopy, while cytotoxicity and antiviral activity were evaluated by MTT and plaque reduction assay, respectively. Two HSV strains, HSV-1F and the clinical isolate VU-09, were inhibited by the chloroform extract (CE) with a median effective concentration (EC50) of 4.32 and 4.50 µg/ml respectively, with a selectivity index (SI) of 11. Time-of-addition assays showed that pre-treatment of virus-infected cells with the CE and its removal before infection reduced the number of plaques without lasting toxicity to the cell, indicating that the CE affected the early stage in the viral life cycle. The number of plaques was also reduced by direct inactivation of virions and by the addition of CE for a short time following attachment of virions. These results together suggest that modification of either the virion surface or the cell surface by the CE inhibits virus entry into the host cell.


Subject(s)
Herpes Simplex/virology , Herpesvirus 1, Human/physiology , Plant Extracts/pharmacology , Stephania/chemistry , Animals , Chlorocebus aethiops , Chloroform/chemistry , Gas Chromatography-Mass Spectrometry , Herpes Simplex/drug therapy , Herpesvirus 1, Human/drug effects , Medicine, Traditional , Methanol/chemistry , Models, Biological , Plant Extracts/chemistry , Vero Cells , Virus Activation/drug effects , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...