Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Mol Ther ; 32(3): 619-636, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38310355

ABSTRACT

Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a rare X-linked recessive lysosomal storage disorder due to a mutation in the lysosomal enzyme iduronate-2-sulfatase (IDS) gene. IDS deficiency leads to a progressive, multisystem accumulation of glycosaminoglycans (GAGs) and results in central nervous system (CNS) manifestations in the severe form. We developed up to clinical readiness a new hematopoietic stem cell (HSC) gene therapy approach for MPS II that benefits from a novel highly effective transduction protocol. We first provided proof of concept of efficacy of our approach aimed at enhanced IDS enzyme delivery to the CNS in a murine study of immediate translational value, employing a lentiviral vector (LV) encoding a codon-optimized human IDS cDNA. Then the therapeutic LV was tested for its ability to efficiently and safely transduce bona fide human HSCs in clinically relevant conditions according to a standard vs. a novel protocol that demonstrated superior ability to transduce bona fide long-term repopulating HSCs. Overall, these results provide strong proof of concept for the clinical translation of this approach for the treatment of Hunter syndrome.


Subject(s)
Iduronate Sulfatase , Mucopolysaccharidosis II , Humans , Animals , Mice , Mucopolysaccharidosis II/therapy , Mucopolysaccharidosis II/drug therapy , Iduronate Sulfatase/genetics , Iduronate Sulfatase/metabolism , Genetic Therapy , Central Nervous System/metabolism , Lentivirus/genetics , Lentivirus/metabolism , Hematopoietic Stem Cells/metabolism
2.
Nat Ecol Evol ; 8(3): 519-535, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38216617

ABSTRACT

Polyploidy or whole-genome duplication (WGD) is a major event that drastically reshapes genome architecture and is often assumed to be causally associated with organismal innovations and radiations. The 2R hypothesis suggests that two WGD events (1R and 2R) occurred during early vertebrate evolution. However, the timing of the 2R event relative to the divergence of gnathostomes (jawed vertebrates) and cyclostomes (jawless hagfishes and lampreys) is unresolved and whether these WGD events underlie vertebrate phenotypic diversification remains elusive. Here we present the genome of the inshore hagfish, Eptatretus burgeri. Through comparative analysis with lamprey and gnathostome genomes, we reconstruct the early events in cyclostome genome evolution, leveraging insights into the ancestral vertebrate genome. Genome-wide synteny and phylogenetic analyses support a scenario in which 1R occurred in the vertebrate stem-lineage during the early Cambrian, and 2R occurred in the gnathostome stem-lineage, maximally in the late Cambrian-earliest Ordovician, after its divergence from cyclostomes. We find that the genome of stem-cyclostomes experienced an additional independent genome triplication. Functional genomic and morphospace analyses demonstrate that WGD events generally contribute to developmental evolution with similar changes in the regulatory genome of both vertebrate groups. However, appreciable morphological diversification occurred only in the gnathostome but not in the cyclostome lineage, calling into question the general expectation that WGDs lead to leaps of bodyplan complexity.


Subject(s)
Hagfishes , Animals , Phylogeny , Hagfishes/genetics , Gene Duplication , Vertebrates/genetics , Genome , Lampreys/genetics
3.
Cell Rep ; 42(8): 112933, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37542721

ABSTRACT

Jawless vertebrates possess an alternative adaptive immune system in which antigens are recognized by variable lymphocyte receptors (VLRs) generated by combinatorial assembly of leucine-rich repeat (LRR) cassettes. Three types of receptors, VLRA, VLRB, and VLRC, have been previously identified. VLRA- and VLRC-expressing cells are T cell-like, whereas VLRB-expressing cells are B cell-like. Here, we report two types of VLRs in lampreys, VLRD and VLRE, phylogenetically related to VLRA and VLRC. The germline VLRD and VLRE genes are flanked by 39 LRR cassettes used in the assembly of mature VLRD and VLRE, with cassettes from chromosomes containing the VLRA and VLRC genes also contributing to VLRD and VLRE assemblies. VLRD and VLRE transcription is highest in the triple-negative (VLRA-/VLRB-/VLRC-) population of lymphocytes, albeit also detectable in VLRA+ and VLRC+ populations. Tissue distribution studies suggest that lamprey VLRD+ and VLRE+ lymphocytes comprise T-like sublineages of cells.


Subject(s)
Lampreys , Lymphocytes , Animals , T-Lymphocytes , Antigens , B-Lymphocytes , Receptors, Antigen/genetics
4.
Neurobiol Dis ; 185: 106248, 2023 09.
Article in English | MEDLINE | ID: mdl-37536384

ABSTRACT

Benzodiazepine (BZ) drugs treat seizures, anxiety, insomnia, and alcohol withdrawal by potentiating γ2 subunit containing GABA type A receptors (GABAARs). BZ clinical use is hampered by tolerance and withdrawal symptoms including heightened seizure susceptibility, panic, and sleep disturbances. Here, we investigated inhibitory GABAergic and excitatory glutamatergic plasticity in mice tolerant to benzodiazepine sedation. Repeated diazepam (DZP) treatment diminished sedative effects and decreased DZP potentiation of GABAAR synaptic currents without impacting overall synaptic inhibition. While DZP did not alter γ2-GABAAR subunit composition, there was a redistribution of extrasynaptic GABAARs to synapses, resulting in higher levels of synaptic BZ-insensitive α4-containing GABAARs and a concomitant reduction in tonic inhibition. Conversely, excitatory glutamatergic synaptic transmission was increased, and NMDAR subunits were upregulated at synaptic and total protein levels. Quantitative proteomics further revealed cortex neuroadaptations of key pro-excitatory mediators and synaptic plasticity pathways highlighted by Ca2+/calmodulin-dependent protein kinase II (CAMKII), MAPK, and PKC signaling. Thus, reduced inhibitory GABAergic tone and elevated glutamatergic neurotransmission contribute to disrupted excitation/inhibition balance and reduced BZ therapeutic power with benzodiazepine tolerance.


Subject(s)
Alcoholism , Substance Withdrawal Syndrome , Mice , Animals , Diazepam/pharmacology , Receptors, GABA-A/metabolism , Benzodiazepines/pharmacology , Brain/metabolism , Synapses/metabolism , gamma-Aminobutyric Acid/pharmacology , Synaptic Transmission
5.
Hum Gene Ther ; 34(15-16): 682-696, 2023 08.
Article in English | MEDLINE | ID: mdl-37376759

ABSTRACT

Neurodegeneration and cerebrovascular disease share an underlying microvascular dysfunction that may be remedied by selective transgene delivery. To date, limited options exist in which cellular components of the brain vasculature can be effectively targeted by viral vector therapeutics. In this study, we characterize the first engineered adeno-associated virus (AAV) capsid mediating high transduction of cerebral vascular pericytes and smooth muscle cells (SMCs). We performed two rounds of in vivo selection with an AAV capsid scaffold displaying a heptamer peptide library to isolate capsids that traffic to the brain after intravenous delivery. One identified capsid, termed AAV-PR, demonstrated high transduction of the brain vasculature, in contrast to the parental capsid, AAV9, which transduces mainly neurons and astrocytes. Further analysis using tissue clearing, volumetric rendering, and colocalization revealed that AAV-PR enabled high transduction of cerebral pericytes located on small-caliber vessels and SMCs in the larger arterioles and penetrating pial arteries. Analysis of tissues in the periphery indicated that AAV-PR also transduced SMCs in large vessels associated with the systemic vasculature. AAV-PR was also able to transduce primary human brain pericytes with higher efficiency than AAV9. Compared with previously published AAV capsids tropisms, AAV-PR represents the first capsid to allow for effective transduction of brain pericytes and SMCs and offers the possibility of genetically modulating these cell types in the context of neurodegeneration and other neurological diseases.


Subject(s)
Capsid , Dependovirus , Humans , Capsid/metabolism , Dependovirus/metabolism , Transduction, Genetic , Pericytes/metabolism , Capsid Proteins/metabolism , Brain/metabolism , Myocytes, Smooth Muscle/metabolism , Genetic Vectors/genetics
6.
EMBO Mol Med ; 15(4): e15968, 2023 04 11.
Article in English | MEDLINE | ID: mdl-36876653

ABSTRACT

Hematopoietic stem and progenitor cells (HSPCs) can establish a long-lasting microglia-like progeny in the central nervous system of properly myeloablated hosts. We exploited this approach to treat the severe CLN1 neurodegenerative disorder, which is the most aggressive form of neuronal ceroid lipofuscinoses due to palmitoyl-protein thioesterase-1 (PPT1) deficiency. We here provide the first evidence that (i) transplantation of wild-type HSPCs exerts partial but long-lasting mitigation of CLN1 symptoms; (ii) transplantation of HSPCs over-expressing hPPT1 by lentiviral gene transfer enhances the therapeutic benefit of HSPCs transplant, with first demonstration of such a dose-effect benefit for a purely neurodegenerative condition like CLN1 disease; (iii) transplantation of hPPT1 over-expressing HSPCs by a novel intracerebroventricular (ICV) approach is sufficient to transiently ameliorate CLN1-symptoms in the absence of hematopoietic tissue engraftment of the transduced cells; and (iv) combinatorial transplantation of transduced HSPCs intravenously and ICV results in a robust therapeutic benefit, particularly on symptomatic animals. Overall, these findings provide first evidence of efficacy and feasibility of this novel approach to treat CLN1 disease and possibly other neurodegenerative conditions, paving the way for its future clinical application.


Subject(s)
Brain , Central Nervous System , Animals , Mice , Disease Models, Animal , Genetic Therapy , Hematopoietic Stem Cells
7.
Angew Chem Int Ed Engl ; 62(11): e202216871, 2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36650612

ABSTRACT

Development of new n-type semiconductors with tunable band gap and dielectric constant has significant implication in dissociating bound charge carrier relevant for demonstrating high performance optoelectronic devices. Boron-ß-thioketonates (MTDKB), analogues to boron-ß-diketonates containing a sulfur atom in the framework of ß-diketones were synthesized. Bulk transport measurement exhibited an outstanding bulk electron mobility of ≈0.003 cm2 V-1 s-1 , which is among the best values reported till date in these class of semiconducting materials and correspondingly a single junction photo responsivity of upto 6 mA W-1 was obtained. This new family of O,S-chelated boron compounds exhibited luminescence in the far red/near-infrared region. The remarkable red shift of 89 nm (fluorescence) observed for 4 a in comparison with analogues boron-ß-diketonate signifies the importance of sulfur in these molecules. MTDKBs with amine functionality have also been investigated as an ON/OFF fluorescent sensor.

8.
iScience ; 25(12): 105661, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36567716

ABSTRACT

Strategies targeting methane (CH4) and nitrous oxide (N2O) emissions are critical to meeting global climate targets. Existing literature estimates the emissions of these gases from specific sectors, but this knowledge must be synthesized to prioritize and incentivize CH4 and N2O mitigation. Accordingly, we review emissions sources and mitigation strategies in all key sectors (fuel extraction and combustion, landfilling, agriculture, wastewater treatment, and chemical industry) and the role of carbon markets in reducing emissions. The most accessible reduction opportunities are in the hydrocarbon extraction and waste sectors, where half (>3 Gt-CO2e/year) of the emissions in these sectors could be mitigated at no net cost. In total, 60% of CH4 emissions can be mitigated at less than $50/t-CO2. Expanding the scope of carbon markets to include these emissions could provide cost-effective decarbonization through 2050. We provide recommendations for carbon markets to improve emissions reductions and set prices to appropriately incentivize mitigation.

9.
Front Cell Infect Microbiol ; 12: 865814, 2022.
Article in English | MEDLINE | ID: mdl-36583107

ABSTRACT

Introduction: After being used vigorously for the previous two decades to treat P. falciparum, chloroquine and sulfadoxine-pyrimethamine were replaced in 2009 with an artemisinin-based combination therapy (artesunate-sulfadoxine-pyrimethamine) in an effort to combat multidrug-resistant parasites. Methods: We set out to assess the genetic variants of sulfadoxine-pyrimethamine resistance and the effectiveness of its treatment in eastern India prior to, during, and 6 to 8 years following the introduction of the new pharmacological regime. In 2008-2009, 318 P. falciparum-positive patients got the recommended doses of sulfadoxine-pyrimethamine. We used 379 additional isolates from 2015 to 2017 in addition to the 106 isolates from 2010. All 803 isolates from two study sites underwent in vitro sulfadoxine-pyrimethamine sensitivity testing and genomic characterisation of sulfadoxine-pyrimethamine resistance (pfdhfr and pfdhps). Results: In Kolkata and Purulia, we observed early treatment failure in 30.7 and 14.4% of patients, respectively, whereas recrudescence was found in 8.1 and 13.4% of patients, respectively, in 2008-2009. In 2017, the proportion of in vitro pyrimethamine and sulfadoxine resistance steadily grew in Kolkata and Purulia despite a single use of sulfadoxine-pyrimethamine. Treatment failures with sulfadoxine-pyrimethamine were linked to quintuple or quadruple pfdhfr- pfdhps mutations (AICII-AGKAT, AICII-AGKAA, AICII-SGKGT, AICII-AGKAA, AICNI-AGKAA) in 2008-2009 (p < 0.001). The subsequent spread of mutant-haplotypes with higher in vitro sulfadoxine-pyrimethamine resistance (p < 0.001), such as the sextuple (dhfr-AIRNI+dhps-AGEAA, dhfr-ANRNL+dhps-AGEAA) and septuple (dhfr-AIRNI+dhps-AGEAT), mutations were observed in 2015-2017. Discussion: This successive spread of mutations with high in vitro sulfadoxine-pyrimethamine resistance confirmed the progressive increase in antifolate resistance even after an 8-year withdrawal of sulfadoxine-pyrimethamine.


Subject(s)
Antimalarials , Malaria, Falciparum , Humans , Plasmodium falciparum/genetics , Antimalarials/pharmacology , Antimalarials/therapeutic use , Sulfadoxine/pharmacology , Sulfadoxine/therapeutic use , Malaria, Falciparum/drug therapy , Malaria, Falciparum/parasitology , Drug Resistance/genetics , Mutation , Genomics , Treatment Outcome , Tetrahydrofolate Dehydrogenase/genetics , Drug Combinations
10.
Waste Manag ; 153: 81-88, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36055178

ABSTRACT

Pyrolysis is a leading technology to convert non-recyclable plastic waste to fuels or chemicals. As interest in the circular economy grows, the latter option has seemingly become more attractive. Once waste plastic is pyrolyzed to, for example, naphtha, however, additional steps are required to produce a polymer product. These steps consume additional energy and water and emit greenhouse gases (GHG). It is unclear whether this more circular option of non-recyclable plastics to virgin plastics offers environmental benefits, compared to their conversion to fuels. We therefore examine whether it is possible to determine the best use of pyrolyzing non-recyclable plastic - fuels or chemicals (low-density polyethylene (LDPE) as product)- from a life cycle perspective. We use recently published life cycle assessments of non-recycled plastics pyrolysis and consider two functional units: per unit mass of non-recyclable plastics and per unit product - MJ of naphtha or kg of LDPE. In the U.S., on a cradle-to-gate, per unit mass waste basis, producing fuel is lower-emitting than producing LDPE from pyrolysis. The opposite is true in the EU. But expanding the system boundary to the grave results in LDPE as the lower-emitting product in both regions. Naphtha and LDPE produced from non-recyclable plastics are less GHG-intensive than conventional routes to these products. Fossil fuel and water consumption and waste generation are all lower in the P2F case. Our results highlight that prioritization of P2P and P2F may depend on regional characteristics such as conventional waste management techniques and water scarcity.


Subject(s)
Greenhouse Gases , Plastics , Alkanes , Animals , Fossil Fuels , Life Cycle Stages , Polyethylene , Pyrolysis , Recycling , Water
12.
J Control Release ; 346: 180-192, 2022 06.
Article in English | MEDLINE | ID: mdl-35447299

ABSTRACT

Repair of methicillin-resistant Staphylococcal (MRSA) chronic osteomyelitis and resulting bone defect is one of the major challenges in orthopaedics. Previous study has shown the effectiveness of antibiotic loaded biodegradable composite bone cement with in vitro tests and in the treatment of experimental osteomyelitis. The cement is composed of poly(lactide-co-glycolide) encapsulated antibiotic-biphasic calcium phosphate granule complex and additive antibiotic powder in gypsum binder. In this study, the cement was studied further to evaluate its in vitro biological properties (cytocompatibility, platelet activation), anti-infective, and bone regenerative potential in comparison to poly(methyl methacrylate) (PMMA) cement and parenteral therapy in 43 patients (age 5-57 years) with chronic MRSA osteomyelitis by analyzing the results of histopathology, radiographs, magnetic resonance imaging, scanning electron microscopy, and serum drug concentrations for 1 year. The composite cement showed superior cytocompatibility and coagulant activity compared to PMMA cement. Moreover, the results of different postoperative clinical and radiological examinations also proved the supremacy of composite cement over the other treatment modalities in terms of success rate, faster sepsis control and bone regeneration. Low serum antibiotic concentrations and normal serum calcium levels indicate that the calcium-rich composite cement is safe for application in human. Therefore, we conclude that the composite bone cement is a promising candidate for the treatment of chronic osteomyelitis.


Subject(s)
Bone Cements , Osteomyelitis , Adolescent , Adult , Anti-Bacterial Agents/therapeutic use , Bone Cements/therapeutic use , Calcium , Child , Child, Preschool , Humans , Middle Aged , Osteomyelitis/drug therapy , Polymethyl Methacrylate , Young Adult
13.
ACS Omega ; 7(1): 5-16, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35036673

ABSTRACT

Lysosomes are membranous compartments containing hydrolytic enzymes, where cellular degradation of proteins and enzymes among others occurs in a controlled manner. Lysosomal dysfunction results in various pathological situations, such as several lysosomal storage disorders, neurodegeneration, infectious diseases, cancers, and aging. In this review, we have discussed different strategies for synthesizing peptides/chimeric molecules, their lysosome-targeting ability, and their ability to treat several lysosomal associated diseases, including lysosomal storage diseases and cancers. We have also discussed the delivery of cargo molecules into the lysosome using lysosome-targeting ligand-decorated nanocarriers. The introduction of a protein-binding ligand along with a lysosome-targeting ligand to manufacture a chimeric architecture for cell-specific protein (extracellular and membrane protein) degradation ability has been discussed thoroughly. Finally, the future applications of these lysosome-targeting peptides, nanocarriers, and chimeric molecules have been pointed out.

14.
Proc Natl Acad Sci U S A ; 118(50)2021 12 14.
Article in English | MEDLINE | ID: mdl-34880135

ABSTRACT

Three types of variable lymphocyte receptor (VLR) genes, VLRA, VLRB, and VLRC, encode antigen recognition receptors in the extant jawless vertebrates, lampreys and hagfish. The somatically diversified repertoires of these VLRs are generated by serial stepwise copying of leucine-rich repeat (LRR) sequences into an incomplete germline VLR gene. Lymphocytes that express VLRA or VLRC are T cell-like, while VLRB-expressing cells are B cell-like. Here, we analyze the composition of the VLRB locus in different jawless vertebrates to elucidate its configuration and evolutionary modification. The incomplete germline VLRB genes of two hagfish species contain short noncoding intervening sequences, whereas germline VLRB genes in six representative lamprey species have much longer intervening sequences that exhibit notable genomic variation. Genomic clusters of potential LRR cassette donors, fragments of which are copied to complete VLRB gene assembly, are identified in Japanese lamprey and sea lamprey. In the sea lamprey, 428 LRR cassettes are located in five clusters spread over a total of 1.7 Mbp of chromosomal DNA. Preferential usage of the different donor cassettes for VLRB assemblage is characterized in our analysis, which reveals evolutionary modifications of the lamprey VLRB genes, elucidates the organization of the complex VLRB locus, and provides a comprehensive catalog of donor VLRB cassettes in sea lamprey and Japanese lamprey.


Subject(s)
Antibodies/metabolism , Hagfishes/genetics , Lampreys/genetics , Leucine-Rich Repeat Proteins/metabolism , Lymphocytes/metabolism , Phylogeny , Animals , Genetic Variation , Leucine-Rich Repeat Proteins/genetics , Species Specificity
15.
Sci Rep ; 11(1): 9946, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33976269

ABSTRACT

Artemisinin is the frontline fast-acting anti-malarial against P. falciparum. Emergence and spread of resistant parasite in eastern-India poses a threat to national malaria control programs. Therefore, the objective of our study is to evaluate the artesunate-sulfadoxine-pyrimethamine efficacy in Central India. 180 monoclonal P. falciparum-infected patients received standard ASSP therapy during August 2015-January 2017, soon after diagnosis and monitored over next 42-days. Artemisinin-resistance was assessed through in-vivo parasite clearance half-life (PC1/2), ex-vivo ring-stage survivability (RSA), and genome analysis of kelch13 and other candidate gene (pfcrt, pfmdr1, pfatpase 6, pfdhfr and pfdhps). Of 180 P. falciparum positive patients, 9.5% showed increased PC1/2 (> 5.5 h), among them eleven isolates (6.1%) showed reduced sensitivity to RSA. In 4.4% of cases, parasites were not cleared by 72 h and showed prolonged PC1/2(5.6 h) (P < 0.005) along with significantly higher RSA (2.2%) than cured patients (0.4%). None of day-3 positive isolates contained the pfkelch13 mutation implicated in artemisinin resistance. Parasite recrudescence was observed in 5.6% patients, which was associated with triple dhfr-dhps (A16I51R59N108I164-S436G437K540G581T613) combination mutation. Emergence of reduced sensitivity to artesunate-sulfadoxine-pyrimethamine, in central India highlighted the risk toward spread of resistant parasite across different parts of India. Day-3 positive parasite, featuring the phenotype of artemisinin-resistance without pfkelch13 mutation, suggested kelch13-independent artemisinin-resistance.


Subject(s)
Artemisinins/therapeutic use , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Adolescent , Adult , Antimalarials/pharmacology , Artemisinins/metabolism , Drug Resistance/genetics , Drug Therapy, Combination/methods , Female , Humans , India/epidemiology , Kelch Repeat/genetics , Malaria/drug therapy , Malaria/parasitology , Malaria, Falciparum/parasitology , Male , Middle Aged , Mutation/drug effects , Phenotype , Plasmodium falciparum/genetics , Plasmodium falciparum/pathogenicity , Polymorphism, Genetic/genetics , Protozoan Proteins/genetics , Pyrimethamine/therapeutic use , Sulfadoxine/therapeutic use , Tetrahydrofolate Dehydrogenase/genetics , Treatment Outcome
16.
Cytokine ; 144: 155555, 2021 08.
Article in English | MEDLINE | ID: mdl-33992538

ABSTRACT

Emergence and spread of resistant parasites to the newest chemotherapeutic anti-malarial agents are the biggest challenges against malaria control programs. Therefore, developing a novel effective treatment to reduce the overgrowing burden of multidrug resistant malaria is a pressing need. Herein, we have developed a biocompatible and biodegradable, non-toxic chitosan-tripolyphosphate-chloroquine (CS-TPP CQ) nanoparticle. CS-TPP CQ nanoparticles effectively kill the parasite through redox generation and induction of the pro- and anti-inflammatory cytokines in both sensitive and resistant parasite in vitro. The in vitro observations showed a strong inhibitory effect (p < 0.01) on pro-inflammatory cytokines more specifically on TNF-α and IFN-γ whereas CS-TPP CQ nanoparticles significantly elevated the anti-inflammatory cytokines- IL-10 and TGF-ß. In addition, CS-TPP CQ nanoparticle significantly increased NO generation (p < 0.01) and altered the GSH/GSSG ratio 72 h after parasite co-culture with peripheral blood mononuclear cells culminating in the free radical induced parasite killing. CS-TPP CQ nanoparticle had an effective dose of 100 ng/ml against CQ-sensitive parasite lines (p < 0.001) whereas effective dose against CQ-resistant parasite line was 200 ng/ml CS-TPP CQ with an effective duration of 72 h (p < 0.001). Our studies suggest that CS-TPP CQ nanoparticle has a potential to modulate the pro- and anti-inflammatory responses, and to trigger the redox-mediated parasite killing. It can be a novel nano-based futuristic approach towards malaria control.


Subject(s)
Antimalarials/pharmacology , Cytokines/metabolism , Malaria/drug therapy , Nanoparticles/administration & dosage , Oxidation-Reduction/drug effects , Parasites/drug effects , Animals , Cells, Cultured , Chitosan/administration & dosage , Chitosan/analogs & derivatives , Chloroquine/pharmacology , Drug Resistance/drug effects , Humans , Inflammation/drug therapy , Inflammation/metabolism , Leukocytes, Mononuclear/metabolism , Malaria/metabolism , Parasites/metabolism , Plasmodium falciparum/drug effects
17.
J Econ Behav Organ ; 185: 647-670, 2021 May.
Article in English | MEDLINE | ID: mdl-36540422

ABSTRACT

How do countries with differing political institutions respond to national crises? We examine policy responses to the coronavirus pandemic in a sample of 125 countries, using high frequency data on two measures: (i) containment policies, i.e., closure of public spaces and restrictions on movement of people, and (ii) health policies, i.e., public information campaigns, testing, and contact tracing. We have four main findings. First, non-democracies impose more stringent policies prior to their first Covid-19 case, but democracies close the gap in containment policies and surpass non-democracies in health policies within a week of registering their first case. Second, while policy responses do not differ by governance systems (presidential or parliamentary), elected leaders who performed better in the last election, or face an election farther in the future, impose more aggressive policies. Third, democracies with greater media freedom respond more slowly in containment policies, but more aggressively in health policies. Lastly, more conducive norms (such as trust in the elected government) systematically predict a more aggressive policy response. Our results remain robust to allowing countries with different economic, social, and medical characteristics to have different evolution of policy responses. Our analysis therefore suggests that political institutions and the incentives of the political leaders embedded therein significantly shape the policy response of governments to a national crisis.

18.
J Sci Food Agric ; 101(9): 3564-3574, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33280107

ABSTRACT

BACKGROUND: Granny Smith (GS) apple has low protein content and poor antimicrobial properties; hence it has been blended with Aloe vera (AV; high ascorbic acid, antimicrobial and antioxidant properties) and soybean flour (SF; rich in phenols, flavonoids, ascorbic acid, total antioxidant and protein) in different proportions to obtain fortified GS, i.e. GSAVSF. Moreover, GS being a perishable fruit, its moisture content should be reduced to enhance shelf life. Accordingly, this GSAVSF was osmotically pre-dehydrated and finally dried through energy-efficient quartz-halogen radiation (QHR) assisted vacuum-drying (QHRVD) to produce dried GSAVSF i.e. (DGSAVSF) under optimized conditions. RESULTS: The optimally dehydrated DGSAVSF product resulted in minimum moisture (4.85% w/w) and maximum protein (6.24 g kg-1 ) content. The application of osmotic dehydration and QHRVD afforded acceptable colour of DGSAVSF compared to GSAVSF (ΔEI * = 10.07 ± 0.21). A parametric drying model was formulated that corroborated well with Fick's equation. QHRVD rendered high moisture diffusivity (1.49 × 10-8 m2 s-1 ) and low activation energy (27.64 kJ mol-1  K-1 ). Appreciable quality improvements with respect to fresh GS concerning ascorbic acid (176.05%), total phenolic (579.07%), total flavonoid (333.33%) contents and 2,2'-diphenyl-1-picrylhydrazyl radical scavenging activity (446.71%) could be achieved. The product demonstrated satisfactory shelf life (1 × 104 CFU g-1 : aerobic mesophilic; 1 × 104 CFU g-1 : mould and yeast) and high rehydration ratio (4.25 ± 0.1). CONCLUSION: The enrichment of GS with AV and SF along with optimal drying protocols could provide a quality fortified DGSAVSF through an energy-proficient sustainable process. The highly nutritious product with suitable colour, microbial stability and rehydration ratio also satisfied a 9-point hedonic scale, thus confirming consumer acceptability. © 2020 Society of Chemical Industry.


Subject(s)
Aloe/chemistry , Desiccation/methods , Flour/analysis , Food Preservation/methods , Glycine max/chemistry , Halogens/chemistry , Malus/chemistry , Quartz/chemistry , Desiccation/instrumentation , Food Preservation/instrumentation , Food, Fortified/analysis , Fruit/chemistry , Kinetics , Vacuum
19.
Indian J Anaesth ; 64(Suppl 2): S107-S115, 2020 May.
Article in English | MEDLINE | ID: mdl-32773848

ABSTRACT

Severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) which causes coronavirus disease (COVID-19) is a highly contagious virus. The closed environment of the operation room (OR) with aerosol generating airway management procedures increases the risk of transmission of infection among the anaesthesiologists and other OR personnel. Wearing complete, fluid impermeable personal protective equipment (PPE) for airway related procedures is recommended. Team preparation, clear methods of communication and appropriate donning and doffing of PPEs are essential to prevent spread of the infection. Optimal pre oxygenation, rapid sequence induction and video laryngoscope aided tracheal intubation (TI) are recommended. Supraglottic airways (SGA) and surgical cricothyroidotomy should be preferred for airway rescue. High flow nasal oxygen, face mask ventilation, nebulisation, small bore cannula cricothyroidotomy with jet ventilation should be avoided. Tracheal extubation should be conducted with the same levels of precaution as TI. The All India Difficult Airway Association (AIDAA) aims to provide consensus guidelines for safe airway management in the OR, while attempting to prevent transmission of infection to the OR personnel during the COVID-19 pandemic.

20.
J Immunol ; 203(11): 2909-2916, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31666307

ABSTRACT

The TNF superfamily ligands BAFF and APRIL interact with three receptors, BAFFR, BCMA, and TACI, to play discrete and crucial roles in regulating B cell selection and homeostasis in mammals. The interactions between these ligands and receptors are both specific and redundant: BAFFR binds BAFF, whereas BCMA and TACI bind to either BAFF or APRIL. In a previous phylogenetic inquiry, we identified and characterized a BAFF-like gene in lampreys, which, with hagfish, are the only extant jawless vertebrates, both of which have B-like and T-like lymphocytes. To gain insight into lymphocyte regulation in jawless vertebrates, in this study we identified two BCMA-like genes in lampreys, BCMAL1 and BCMAL2, which were found to be preferentially expressed by B-like lymphocytes. In vitro analyses indicated that the lamprey BAFF-like protein can bind to a BCMA-like receptor Ig fusion protein and to both BCMAL1- and BCMAL2-transfected cells. Discriminating regulatory roles for the two BCMA-like molecules are suggested by their differential expression before and after activation of the B-like lymphocytes in lampreys. Our composite results imply that BAFF-based mechanisms for B cell regulation evolved before the divergence of jawed and jawless vertebrates.


Subject(s)
B-Cell Maturation Antigen/genetics , B-Cell Maturation Antigen/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Lampreys/immunology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...