Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 27(11): 110501, 2022 11.
Article in English | MEDLINE | ID: mdl-36458112

ABSTRACT

Conventional optoacoustic microscopy (OAM) instruments have at their core a nanosecond pulse duration laser. If lasers with a shorter pulse duration are used, broader, higher frequency ultrasound waves are expected to be generated and as a result, the axial resolution of the instrument is improved. Here, we exploit the advantage offered by a picosecond duration pulse laser to enhance the axial resolution of an OAM instrument. In comparison to an instrument equipped with a 2-ns pulse duration laser, an improvement in the axial resolution of 50% is experimentally demonstrated by using excitation pulses of only 85 ps. To illustrate the capability of the instrument to generate high-quality optoacoustic images, en-face, in-vivo images of the brain of Xenopus laevis tadpole are presented with a lateral resolution of 3.8 µ m throughout the entire axial imaging range.


Subject(s)
Lasers , Microscopy , Brain , Heart Rate , Radio Waves
2.
Sci Rep ; 12(1): 10590, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732808

ABSTRACT

In this study, for the first time, a Photoacoustic Microscopy instrument driven by a single optical source operating over a wide spectral range (475-2400 nm), covering slightly more than two octaves is demonstrated. Xenopus laevis tadpoles were imaged in vivo using the whole spectral range of 2000 nm of a supercontinuum optical source, and a novel technique of mapping absorbers is also demonstrated, based on the supposition that only one chromophore contributes to the photoacoustic signal of each individual voxel in the 3D photoacoustic image. By using a narrow spectral window (of 25 nm bandwidth) within the broad spectrum of the supercontinuum source at a time, in vivo hyper-spectral Photoacoustic images of tadpoles are obtained. By post-processing pairs of images obtained using different spectral windows, maps of five endogenous contrast agents (hemoglobin, melanin, collagen, glucose and lipids) are produced.


Subject(s)
Microscopy , Photoacoustic Techniques , Imaging, Three-Dimensional , Microscopy/methods , Photoacoustic Techniques/methods , Spectrum Analysis
3.
Opt Lett ; 46(5): 1129-1132, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33649674

ABSTRACT

We demonstrate a simple and power stable 1.5-10.5 µm cascaded mid-infrared 3 MHz supercontinuum fiber laser. To increase simplicity and decrease cost, the design of the fiber cascade is optimized so that no thulium amplifier is needed. Despite the simple design with no thulium amplifier, we demonstrate a high average output power of 86.6 mW. Stability measurements for seven days with 8-9 h operation daily revealed fluctuations in the average power with a standard deviation of only 0.43% and a power spectral density stability of ±0.18dBm/nm for wavelengths <10µm. The high-repetition-rate, robust, and cheap all-fiber design makes this source ideal for applications in spectroscopy and imaging.

4.
Opt Lett ; 46(3): 452-455, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33528382

ABSTRACT

In this work, we present a high-pulse-energy multi-wavelength Raman laser spanning from 1.53 µm up to 2.4 µm by employing the cascaded rotational stimulated Raman scattering effect in a 5 m hydrogen (H2)-filled nested anti-resonant fiber, pumped by a linearly polarized Er/Yb fiber laser with a peak power of ∼13kW and pulse duration of ∼7ns in the C-band. The developed Raman laser has distinct lines at 1683 nm, 1868 nm, 2100 nm, and 2400 nm, with pulse energies as high as 18.25 µJ, 14.4 µJ, 14.1 µJ, and 8.2 µJ, respectively. We demonstrate how the energy in the Raman lines can be controlled by tuning the H2 pressure from 1 bar to 20 bar.

5.
Sci Rep ; 11(1): 3512, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33568763

ABSTRACT

Development of novel mid-infrared (MIR) lasers could ultimately boost emerging detection technologies towards innovative spectroscopic and imaging solutions. Photoacoustic (PA) modality has been heralded for years as one of the most powerful detection tools enabling high signal-to-noise ratio analysis. Here, we demonstrate a novel, compact and sensitive MIR-PA system for carbon dioxide (CO2) monitoring at its strongest absorption band by combining a gas-filled fiber laser and PA technology. Specifically, the PA signals were excited by a custom-made hydrogen (H2) based MIR Raman fiber laser source with a pulse energy of ⁓ 18 µJ, quantum efficiency of ⁓ 80% and peak power of ⁓ 3.9 kW. A CO2 detection limit of 605 ppbv was attained from the Allan deviation. This work constitutes an alternative method for advanced high-sensitivity gas detection.

6.
Opt Lett ; 45(18): 5161-5164, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32932478

ABSTRACT

We experimentally investigate the influence of varying pulse parameters on the spectral broadening, power spectral density, and relative intensity noise of mid-infrared (mid-IR) in-amplifier cascaded supercontinuum generation (SCG) by varying the pulse duration (35 ps, 1 ns, 3 ns) and repetition rate (100, 500, 1000 kHz). The system is characterized at the output of the erbium-ytterbium-doped in-amplifier SCG stage, the thulium/germanium power redistribution stage, and the passive ZBLAN fiber stage. In doing so, we demonstrate that the output of the later stages depends critically on the in-amplifier stage, and relate this to the onset of modulation instability.

7.
Sci Rep ; 10(1): 8230, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32427972

ABSTRACT

The pulse-to-pulse relative intensity noise (RIN) of near-infrared (near-IR) in-amplifier supercontinuum (SC) sources and mid-IR cascaded SC sources was experimentally and numerically investigated and shown to have significantly lowered noise due to the fundamental effect of gain-induced soliton-spectral alignment. The mid-IR SC source is based on a near-IR in-amplifier SC pumping a cascade of thulium-doped and ZBLAN fibers. We demonstrate that the active thulium-doped fiber not only extend the spectrum, but also to significantly reduce the RIN by up to 22% in the long wavelength region above 2 µm. Using numerical simulations, we demonstrate that the noise reduction is the result of an interplay between absorption-emission processes and nonlinear soliton dynamics leading to the soliton-spectral alignment. In the same way we show that the RIN of the near-IR in-amplifier SC source is already significantly reduced because the spectral broadening takes place in an active fiber that also introduces soliton-spectral alignment. We further show that the low noise properties are transferred to the subsequent fluoride SC, which has a RIN lower than 10% (5%) in a broad region from 1.1-3.6 µm (1.4-3.0 µm). The demonstrated low noise significantly improves the applicability of these broadband sources for mid-IR imaging and spectroscopy.

8.
Opt Lett ; 45(7): 1938-1941, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32236037

ABSTRACT

In this Letter, we demonstrate a high pulse energy and linearly polarized mid-infrared Raman fiber laser targeting the strongest absorption line of ${\rm CO}_2$CO2 at $\sim{4.2}\;\unicode {x00B5} {\rm m}$∼4.2µm. This laser was generated from a hydrogen (${\rm H}_2$H2)-filled antiresonant hollow-core fiber, pumped by a custom-made 1532.8 nm Er-doped fiber laser delivering 6.9 ns pulses and 11.6 kW peak power. A quantum efficiency as high as 74% was achieved, to yield 17.6 µJ pulse energy at 4.22 µm. Less than 20 bar ${\rm H}_2$H2 pressure was required to maximize the pulse energy since the transient Raman regime was efficiently suppressed by the long pump pulses.

9.
Photoacoustics ; 18: 100163, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32042589

ABSTRACT

Among the numerous endogenous biological molecules, information on lipids is highly coveted for understanding both aspects of developmental biology and research in fatal chronic diseases. Due to the pronounced absorption features of lipids in the extended near-infrared region (1650-1850 nm), visualisation and identification of lipids become possible using multi-spectral photoacoustic (optoacoustic) microscopy. However, the spectroscopic studies in this spectral region require lasers that can produce high pulse energies over a broad spectral bandwidth to efficiently excite strong photoacoustic signals. The most well-known laser sources capable of satisfying the multi-spectral photoacoustic microscopy requirements (tunability and pulse energy) are tunable nanosecond optical parametric oscillators. However, these lasers have an inherently large footprint, thus preventing their use in compact microscopy systems. Besides, they exhibit low-repetition rates. Here, we demonstrate a compact all-fibre, high pulse energy supercontinuum laser that covers a spectral range from 1440 to 1870 nm with a 7 ns pulse duration and total energy of 18.3 µJ at a repetition rate of 100 kHz. Using the developed high-pulse energy source, we perform multi-spectral photoacoustic microscopy imaging of lipids, both ex vivo on adipose tissue and in vivo to study the development of Xenopus laevis tadpoles, using six different excitation bands over the first overtone transition of C-H vibration bonds (1650-1850 nm).

SELECTION OF CITATIONS
SEARCH DETAIL
...