Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36277673

ABSTRACT

Time-synchronized state estimation for reconfigurable distribution networks is challenging because of limited real-time observability. This paper addresses this challenge by formulating a deep learning (DL)-based approach for topology identification (TI) and unbalanced three-phase distribution system state estimation (DSSE). Two deep neural networks (DNNs) are trained for time-synchronized DNN-based TI and DSSE, respectively, for systems that are incompletely observed by synchrophasor measurement devices (SMDs) in real-time. A data-driven approach for judicious SMD placement to facilitate reliable TI and DSSE is also provided. Robustness of the proposed methodology is demonstrated by considering non-Gaussian noise in the SMD measurements. A comparison of the DNN-based DSSE with more conventional approaches indicates that the DL-based approach gives better accuracy with smaller number of SMDs.

2.
IEEE Control Syst Lett ; 6: 1244-1249, 2022.
Article in English | MEDLINE | ID: mdl-35754939

ABSTRACT

This letter studies a topology identification problem for an electric distribution grid using sign patterns of the inverse covariance matrix of bus voltage magnitudes and angles, while accounting for hidden buses. Assuming the grid topology is sparse and the number of hidden buses are fewer than those of the observed buses, we express the observed voltages inverse covariance matrix as the sum of three structured matrices: sparse matrix, low-rank matrix with sparse factors, and low-rank matrix. Using the sign patterns of the first two of these matrices, we develop an algorithm to identify the topology of a distribution grid with a minimum cycle length greater than three. To estimate the structured matrices from the empirical inverse covariance matrix, we formulate a novel convex optimization problem with appropriate sparsity and structured norm constraints and solve it using an alternating minimization method. We validate the proposed algorithm's performance on a modified IEEE 33 bus system.

3.
J Math Biol ; 84(5): 36, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35394192

ABSTRACT

Species tree estimation faces many significant hurdles. Chief among them is that the trees describing the ancestral lineages of each individual gene-the gene trees-often differ from the species tree. The multispecies coalescent is commonly used to model this gene tree discordance, at least when it is believed to arise from incomplete lineage sorting, a population-genetic effect. Another significant challenge in this area is that molecular sequences associated to each gene typically provide limited information about the gene trees themselves. While the modeling of sequence evolution by single-site substitutions is well-studied, few species tree reconstruction methods with theoretical guarantees actually address this latter issue. Instead, a standard-but unsatisfactory-assumption is that gene trees are perfectly reconstructed before being fed into a so-called summary method. Hence much remains to be done in the development of inference methodologies that rigorously account for gene tree estimation error-or completely avoid gene tree estimation in the first place. In previous work, a data requirement trade-off was derived between the number of loci m needed for an accurate reconstruction and the length of the locus sequences k. It was shown that to reconstruct an internal branch of length f, one needs m to be of the order of [Formula: see text]. That previous result was obtained under the restrictive assumption that mutation rates as well as population sizes are constant across the species phylogeny. Here we further generalize this result beyond this assumption. Our main contribution is a novel reduction to the molecular clock case under the multispecies coalescent, which we refer to as a stochastic Farris transform. As a corollary, we also obtain a new identifiability result of independent interest: for any species tree with [Formula: see text] species, the rooted topology of the species tree can be identified from the distribution of its unrooted weighted gene trees even in the absence of a molecular clock.


Subject(s)
Genetic Speciation , Models, Genetic , Phylogeny
4.
NPJ Digit Med ; 4(1): 153, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34711924

ABSTRACT

Digital health data are multimodal and high-dimensional. A patient's health state can be characterized by a multitude of signals including medical imaging, clinical variables, genome sequencing, conversations between clinicians and patients, and continuous signals from wearables, among others. This high volume, personalized data stream aggregated over patients' lives has spurred interest in developing new artificial intelligence (AI) models for higher-precision diagnosis, prognosis, and tracking. While the promise of these algorithms is undeniable, their dissemination and adoption have been slow, owing partially to unpredictable AI model performance once deployed in the real world. We posit that one of the rate-limiting factors in developing algorithms that generalize to real-world scenarios is the very attribute that makes the data exciting-their high-dimensional nature. This paper considers how the large number of features in vast digital health data can challenge the development of robust AI models-a phenomenon known as "the curse of dimensionality" in statistical learning theory. We provide an overview of the curse of dimensionality in the context of digital health, demonstrate how it can negatively impact out-of-sample performance, and highlight important considerations for researchers and algorithm designers.

5.
Proc Mach Learn Res ; 130: 3619-3627, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34258582

ABSTRACT

We study the problem of community recovery from coarse measurements of a graph. In contrast to the problem of community recovery of a fully observed graph, one often encounters situations when measurements of a graph are made at low-resolution, each measurement integrating across multiple graph nodes. Such low-resolution measurements effectively induce a coarse graph with its own communities. Our objective is to develop conditions on the graph structure, the quantity, and properties of measurements, under which we can recover the community organization in this coarse graph. In this paper, we build on the stochastic block model by mathematically formalizing the coarsening process, and characterizing its impact on the community members and connections. Through this novel setup and modeling, we characterize an error bound for community recovery. The error bound yields simple and closed-form asymptotic conditions to achieve the perfect recovery of the coarse graph communities.

6.
IEEE Trans Haptics ; 14(1): 188-199, 2021.
Article in English | MEDLINE | ID: mdl-32746381

ABSTRACT

Communication is an important part of our daily interactions; however, communication can be hindered, either through visual or auditory impairment, or because usual communication channels are overloaded. When standard communication channels are not available, our sense of touch offers an alternative sensory modality for transmitting messages. Multi-sensory haptic cues that combine multiple types of haptic sensations have shown promise for applications, such as haptic communication, that require large discrete cue sets while maintaining a small, wearable form factor. This article presents language transmission using a multi-sensory haptic device that occupies a small footprint on the upper arm. In our approach, phonemes are encoded as multisensory haptic cues consisting of vibration, radial squeeze, and lateral skin stretch components. Participants learned to identify haptically transmitted phonemes and words after training across a four day training period. A subset of our participants continued their training to extend word recognition free response. Participants were able to identify words after four days using multiple choice with an accuracy of 89% and after eight days using free response with an accuracy of 70%. These results show promise for the use of multisensory haptics for haptic communication, demonstrating high word recognition performance with a small, wearable device.


Subject(s)
Touch Perception , Wearable Electronic Devices , Cues , Humans , Language , Touch
7.
Article in English | MEDLINE | ID: mdl-26357228

ABSTRACT

We consider the problem of estimating the evolutionary history of a set of species (phylogeny or species tree) from several genes. It is known that the evolutionary history of individual genes (gene trees) might be topologically distinct from each other and from the underlying species tree, possibly confounding phylogenetic analysis. A further complication in practice is that one has to estimate gene trees from molecular sequences of finite length. We provide the first full data-requirement analysis of a species tree reconstruction method that takes into account estimation errors at the gene level. Under that criterion, we also devise a novel reconstruction algorithm that provably improves over all previous methods in a regime of interest.


Subject(s)
Computational Biology/methods , Evolution, Molecular , Genetic Loci/genetics , Phylogeny , Algorithms , Databases, Genetic , Genetic Speciation
SELECTION OF CITATIONS
SEARCH DETAIL
...