Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Eng ; 70(8): 2430-2444, 2023 08.
Article in English | MEDLINE | ID: mdl-37027661

ABSTRACT

In this work, we propose a non-contact video-based approach that detects when an individual's skin temperature is elevated beyond the normal range. The detection of elevated skin temperature is critical as a diagnostic tool to infer the presence of an infection or an abnormal health condition. Detection of elevated skin temperature is typically achieved using contact thermometers or non-contact infrared-based sensors. The ubiquity of video data acquisition devices such as mobile phones and computers motivates the development of a binary classification approach, the Video-based TEMPerature (V-TEMP) to classify subjects with non-elevated/elevated skin temperature. We leverage the correlation between the skin temperature and the angular reflectance distribution of light, to empirically differentiate between skin at non-elevated temperature and skin at elevated temperature. We demonstrate the uniqueness of this correlation by 1) revealing the existence of a difference in the angular reflectance distribution of light from skin-like and non-skin like material and 2) exploring the consistency of the angular reflectance distribution of light in materials exhibiting optical properties similar to human skin. Finally, we demonstrate the robustness of V-TEMP by evaluating the efficacy of elevated skin temperature detection on subject videos recorded in 1) laboratory controlled environments and 2) outside-the-lab environments. V-TEMP is beneficial in two ways; 1) it is non-contact-based, reducing the possibility of infection due to contact and 2) it is scalable, given the ubiquity of video-recording devices.


Subject(s)
Skin Temperature , Thermometers , Humans , Temperature , Video Recording
2.
NPJ Digit Med ; 4(1): 91, 2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34083724

ABSTRACT

This work investigates the estimation biases of remote photoplethysmography (rPPG) methods for pulse rate measurement across diverse demographics. Advances in photoplethysmography (PPG) and rPPG methods have enabled the development of contact and noncontact approaches for continuous monitoring and collection of patient health data. The contagious nature of viruses such as COVID-19 warrants noncontact methods for physiological signal estimation. However, these approaches are subject to estimation biases due to variations in environmental conditions and subject demographics. The performance of contact-based wearable sensors has been evaluated, using off-the-shelf devices across demographics. However, the measurement uncertainty of rPPG methods that estimate pulse rate has not been sufficiently tested across diverse demographic populations or environments. Quantifying the efficacy of rPPG methods in real-world conditions is critical in determining their potential viability as health monitoring solutions. Currently, publicly available face datasets accompanied by physiological measurements are typically captured in controlled laboratory settings, lacking diversity in subject skin tones, age, and cultural artifacts (e.g, bindi worn by Indian women). In this study, we collect pulse rate and facial video data from human subjects in India and Sierra Leone, in order to quantify the uncertainty in noncontact pulse rate estimation methods. The video data are used to estimate pulse rate using state-of-the-art rPPG camera-based methods, and compared against ground truth measurements captured using an FDA-approved contact-based pulse rate measurement device. Our study reveals that rPPG methods exhibit similar biases when compared with a contact-based device across demographic groups and environmental conditions. The mean difference between pulse rates measured by rPPG methods and the ground truth is found to be ~2% (1 beats per minute (b.p.m.)), signifying agreement of rPPG methods with the ground truth. We also find that rPPG methods show pulse rate variability of ~15% (11 b.p.m.), as compared to the ground truth. We investigate factors impacting rPPG methods and discuss solutions aimed at mitigating variance.

SELECTION OF CITATIONS
SEARCH DETAIL
...