Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Afr ; 20: e01681, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37192886

ABSTRACT

Owing to the profoundly irresistible nature of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, an enormous number of individuals halt in the line for Computed Tomography (CT) scan assessment, which overburdens the medical practitioners, radiologists, and adversely influences the patient's remedy, diagnosis, as well as restraint the epidemic. Medical facilities like intensive care systems and mechanical ventilators are restrained due to highly infectious diseases. It turns out to be very imperative to characterize the patients as per their asperity levels. This article exhibited a novel execution of a threshold-based image segmentation technique and random forest classifier for COVID-19 contamination asperity identification. With the help of the image segmentation model and machine learning classifier, we can identify and classify COVID-19 individuals into three asperity classes such as early, progressive, and advanced, with an accuracy of 95.5% using chest CT scan image database. Experimental outcomes on an adequately enormous number of CT scan images exhibit the adequacy of the machine learning mechanism developed and recommended to identify coronavirus severity.

2.
Arch Comput Methods Eng ; 30(4): 2667-2682, 2023.
Article in English | MEDLINE | ID: mdl-36685135

ABSTRACT

The absolute previously infected novel coronavirus (COVID-19) was found in Wuhan, China, in December 2019. The COVID-19 epidemic has spread to more than 220 nations and territories globally and has altogether influenced each part of our day-to-day lives. As of 9th March 2022, a total aggregate of 44,78,82,185 (60,07,317) contaminated (dead) COVID-19 cases were accounted for all over the world. The quantities of contaminated cases passing despite everything increment essentially and do not indicate a controlled circumstance. The scope of this paper is to address this issue by presenting a comprehensive and comparative analysis of the existing Machine Learning (ML), Deep Learning (DL) and Artificial Intelligence (AI) based approaches used in significance in reacting to the COVID-19 epidemic and diagnosing the severe impacts. The paper provides, firstly, an overview of COVID-19 infection and highlights of this article; Secondly, an overview of exploring various executive innovations by utilizing different resources to stop the spread of COVID-19; Thirdly, a comparison of existing predicting methods of COVID-19 in the literature, with focus on ML, DL and AI-driven techniques with performance metrics; and finally, a discussion on the results of the work as well as future scope.

3.
Comput Biol Med ; 136: 104729, 2021 09.
Article in English | MEDLINE | ID: mdl-34365278

ABSTRACT

SARS-COV2 (Covid-19) prevails in the form of multiple mutant variants causing pandemic situations around the world. Thus, medical diagnosis is not accurate. Although several clinical diagnostic methodologies have been introduced hitherto, chest X-ray and computed tomography (CT) imaging techniques complement the analytical methods (for instance, RT-PCR) to a certain extent. In this context, we demonstrate a novel framework by employing various image segmentation models to leverage the available image databases (9000 chest X-ray images and 6000 CT scan images). The proposed methodology is expected to assist in the prognosis of Covid-19-infected individuals through examination of chest X-rays and CT scans of images using the Deep Covix-Net model for identifying novel coronavirus-infected patients effectively and efficiently. The slice of the precision score is analysed in terms of performance metrics such as accuracy, the confusion matrix, and the receiver operating characteristic curve. The result leans on the database obtainable in the GitHub and Kaggle repository, conforming to their endorsed chest X-ray and CT images. The classification performances of various algorithms were examined for a test set with 1800 images. The proposed model achieved a 96.8% multiple-classification accuracy among Covid-19, normal, and pneumonia chest X-ray databases. Moreover, it attained a 97% accuracy among Covid-19 and normal CT scan images. Thus, the proposed mechanism achieves the rigorousness associated with the machine learning technique, providing rapid outcomes for both training and testing datasets.


Subject(s)
COVID-19 , Deep Learning , Humans , RNA, Viral , SARS-CoV-2 , Tomography, X-Ray Computed , X-Rays
4.
Chaos Solitons Fractals ; 140: 110182, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32834658

ABSTRACT

The rapid spread of novel coronavirus (namely Covid-19) worldwide has alarmed a pandemic since its outbreak in the city of Wuhan, China in December 2019. While the world still tries to wrap its head around as to how to contain the rapid spread of the novel coronavirus, the pandemic has already claimed several thousand lives throughout the world. Yet, the diagnosis of virus spread in humans has proven complexity. A blend of computed tomography imaging, entire genome sequencing, and electron microscopy have been at first adapted to screen and distinguish SARS-CoV-2, the viral etiology of Covid-19. There are a less number of Covid-19 test kits accessible in hospitals because of the expanding cases every day. Accordingly, it is required to utensil a self-exposure framework as a fast substitute analysis to contain Covid-19 spreading among individuals considering the world at large. In the present work, we have elaborated a prudent methodology that helps identify Covid-19 infected people among the normal individuals by utilizing CT scan and chest x-ray images using Artificial Intelligence (AI). The strategy works with a dataset of Covid-19 and normal chest x-ray images. The image diagnosis tool utilizes decision tree classifier for finding novel corona virus infected person. The percentage accuracy of an image is analyzed in terms of precision, recall score and F1 score. The outcome depends on the information accessible in the store of Kaggle and Open-I according to their approved chest X-ray and CT scan images. Interestingly, the test methodology demonstrates that the intended algorithm is robust, accurate and precise. Our technique accomplishes the exactness focused on the AI innovation which provides faster results during both training and inference.

5.
J Integr Neurosci ; 14(3): 383-402, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26365114

ABSTRACT

Functional brain networks (FBNs) are gaining increasing attention in computational neuroscience due to their ability to reveal dynamic interdependencies between brain regions. The dynamics of such networks during cognitive activity between stimulus and response using multi-channel electroencephalogram (EEG), recorded from 16 healthy human participants are explored in this research. Successive EEG segments of 500[Formula: see text]ms duration starting from the onset of cognitive stimulation have been used to analyze and understand the cognitive dynamics. The approach employs a combination of signal processing techniques, nonlinear statistical measures and graph-theoretical analysis. The efficacy of this approach in detecting and tracking cognitive load induced changes in EEG data is clearly demonstrated using graph metrics. It is revealed that most cognitive activity occurs within approximately 500[Formula: see text]ms of the stimulus presentation in addition to temporal variability in the FBNs. It is shown that mutual information (MI), a nonlinear measure, produces good correlations between the EEG channels thus enabling the construction of FBNs which are sensitive to cognitive load induced changes in EEG. Analyses of the dynamics of FBNs and the visualization approach reveal hard to detect subtle changes in cognitive function and hence may lead to a better understanding of cognitive processing in the brain. The techniques exploited have the potential to detect human cognitive dysfunction (impairments).


Subject(s)
Brain Mapping , Brain/physiology , Cognition/physiology , Electroencephalography , Adult , Brain Mapping/methods , Electroencephalography/methods , Humans , Information Theory , Middle Aged , Neural Pathways/physiology , Neuropsychological Tests , Nonlinear Dynamics , Time Factors , Young Adult
6.
J Neural Eng ; 11(3): 036012, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24809969

ABSTRACT

OBJECTIVE: The objective of our current study was to look for the EEG correlates that can reveal the engaged state of the brain while undertaking cognitive tasks. Specifically, we aimed to identify EEG features that could detect audio distraction during simulated driving. APPROACH: Time varying autoregressive (TVAR) analysis using Kalman smoother was carried out on short time epochs of EEG data collected from participants as they undertook two simulated driving tasks. TVAR coefficients were then used to construct all pole model enabling the identification of EEG features that could differentiate normal driving from audio distracted driving. MAIN RESULTS: Pole analysis of the TVAR model led to the visualization of event related synchronization/desynchronization (ERS/ERD) patterns in the form of pole displacements in pole plots of the temporal EEG channels in the z plane enabling the differentiation of the two driving conditions. ERS in the EEG data has been demonstrated during audio distraction as an associated phenomenon. SIGNIFICANCE: Visualizing the ERD/ERS phenomenon in terms of pole displacement is a novel approach. Although ERS/ERD has previously been demonstrated as reliable when applied to motor related tasks, it is believed to be the first time that it has been applied to investigate human cognitive phenomena such as attention and distraction. Results confirmed that distracted/non-distracted driving states can be identified using this approach supporting its applicability to cognition research.


Subject(s)
Attention/physiology , Auditory Perception/physiology , Automobile Driving , Electroencephalography/methods , Models, Statistical , Perceptual Masking/physiology , Visual Perception/physiology , Adult , Algorithms , Cognition/physiology , Computer Simulation , Female , Humans , Male , Middle Aged , Psychomotor Performance/physiology , Regression Analysis , Reproducibility of Results , Sensitivity and Specificity , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...