Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Nature ; 626(8001): 1042-1048, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38418917

ABSTRACT

The loss of the tail is among the most notable anatomical changes to have occurred along the evolutionary lineage leading to humans and to the 'anthropomorphous apes'1-3, with a proposed role in contributing to human bipedalism4-6. Yet, the genetic mechanism that facilitated tail-loss evolution in hominoids remains unknown. Here we present evidence that an individual insertion of an Alu element in the genome of the hominoid ancestor may have contributed to tail-loss evolution. We demonstrate that this Alu element-inserted into an intron of the TBXT gene7-9-pairs with a neighbouring ancestral Alu element encoded in the reverse genomic orientation and leads to a hominoid-specific alternative splicing event. To study the effect of this splicing event, we generated multiple mouse models that express both full-length and exon-skipped isoforms of Tbxt, mimicking the expression pattern of its hominoid orthologue TBXT. Mice expressing both Tbxt isoforms exhibit a complete absence of the tail or a shortened tail depending on the relative abundance of Tbxt isoforms expressed at the embryonic tail bud. These results support the notion that the exon-skipped transcript is sufficient to induce a tail-loss phenotype. Moreover, mice expressing the exon-skipped Tbxt isoform develop neural tube defects, a condition that affects approximately 1 in 1,000 neonates in humans10. Thus, tail-loss evolution may have been associated with an adaptive cost of the potential for neural tube defects, which continue to affect human health today.


Subject(s)
Alternative Splicing , Evolution, Molecular , Hominidae , T-Box Domain Proteins , Tail , Animals , Humans , Mice , Alternative Splicing/genetics , Alu Elements/genetics , Disease Models, Animal , Genome/genetics , Hominidae/anatomy & histology , Hominidae/genetics , Introns/genetics , Neural Tube Defects/genetics , Neural Tube Defects/metabolism , Phenotype , Protein Isoforms/deficiency , Protein Isoforms/genetics , Protein Isoforms/metabolism , T-Box Domain Proteins/deficiency , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Tail/anatomy & histology , Tail/embryology , Exons/genetics
2.
Semin Cell Dev Biol ; 152-153: 44-57, 2024.
Article in English | MEDLINE | ID: mdl-37029058

ABSTRACT

The chromosomally-arrayed Hox gene family plays central roles in embryonic patterning and the specification of cell identities throughout the animal kingdom. In vertebrates, the relatively large number of Hox genes and pervasive expression throughout the body has hindered understanding of their biological roles during differentiation. Studies on the subtype diversification of spinal motor neurons (MNs) have provided a tractable system to explore the function of Hox genes during differentiation, and have provided an entry point to explore how neuronal fate determinants contribute to motor circuit assembly. Recent work, using both in vitro and in vivo models of MN subtype differentiation, have revealed how patterning morphogens and regulation of chromatin structure determine cell-type specific programs of gene expression. These studies have not only shed light on basic mechanisms of rostrocaudal patterning in vertebrates, but also have illuminated mechanistic principles of gene regulation that likely operate in the development and maintenance of terminal fates in other systems.


Subject(s)
Homeodomain Proteins , Spinal Cord , Animals , Homeodomain Proteins/metabolism , Spinal Cord/metabolism , Gene Expression Regulation, Developmental , Cell Differentiation/genetics , Motor Neurons/metabolism , Vertebrates
3.
Cell Rep ; 42(11): 113333, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37897724

ABSTRACT

Motor neuron (MN) development and nerve regeneration requires orchestrated action of a vast number of molecules. Here, we identify SorCS2 as a progranulin (PGRN) receptor that is required for MN diversification and axon outgrowth in zebrafish and mice. In zebrafish, SorCS2 knockdown also affects neuromuscular junction morphology and fish motility. In mice, SorCS2 and PGRN are co-expressed by newborn MNs from embryonic day 9.5 until adulthood. Using cell-fate tracing and nerve segmentation, we find that SorCS2 deficiency perturbs cell-fate decisions of brachial MNs accompanied by innervation deficits of posterior nerves. Additionally, adult SorCS2 knockout mice display slower motor nerve regeneration. Interestingly, primitive macrophages express high levels of PGRN, and their interaction with SorCS2-positive motor axon is required during axon pathfinding. We further show that SorCS2 binds PGRN to control its secretion, signaling, and conversion into granulins. We propose that PGRN-SorCS2 signaling controls MN development and regeneration in vertebrates.


Subject(s)
Intercellular Signaling Peptides and Proteins , Zebrafish , Mice , Animals , Progranulins , Zebrafish/metabolism , Motor Neurons/metabolism , Granulins , Mice, Knockout , Nerve Tissue Proteins/metabolism , Receptors, Cell Surface/metabolism
4.
Cell Rep ; 42(9): 113049, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37676768

ABSTRACT

Locomotion requires precise control of the strength and speed of muscle contraction and is achieved by recruiting functionally distinct subtypes of motor neurons (MNs). MNs are essential to movement and differentially susceptible in disease, but little is known about how MNs acquire functional subtype-specific features during development. Using single-cell RNA profiling in embryonic and larval zebrafish, we identify novel and conserved molecular signatures for MN functional subtypes and identify genes expressed in both early post-mitotic and mature MNs. Assessing MN development in genetic mutants, we define a molecular program essential for MN functional subtype specification. Two evolutionarily conserved transcription factors, Prdm16 and Mecom, are both functional subtype-specific determinants integral for fast MN development. Loss of prdm16 or mecom causes fast MNs to develop transcriptional profiles and innervation similar to slow MNs. These results reveal the molecular diversity of vertebrate axial MNs and demonstrate that functional subtypes are specified through intrinsic transcriptional codes.


Subject(s)
Spinal Cord , Zebrafish , Animals , Motor Neurons/physiology , Transcription Factors/genetics , Locomotion
5.
Elife ; 112022 10 26.
Article in English | MEDLINE | ID: mdl-36288084

ABSTRACT

The little skate Leucoraja erinacea, a cartilaginous fish, displays pelvic fin driven walking-like behavior using genetic programs and neuronal subtypes similar to those of land vertebrates. However, mechanistic studies on little skate motor circuit development have been limited, due to a lack of high-quality reference genome. Here, we generated an assembly of the little skate genome, with precise gene annotation and structures, which allowed post-genome analysis of spinal motor neurons (MNs) essential for locomotion. Through interspecies comparison of mouse, skate and chicken MN transcriptomes, shared and divergent gene expression profiles were identified. Comparison of accessible chromatin regions between mouse and skate MNs predicted shared transcription factor (TF) motifs with divergent ones, which could be used for achieving differential regulation of MN-expressed genes. A greater number of TF motif predictions were observed in MN-expressed genes in mouse than in little skate. These findings suggest conserved and divergent molecular mechanisms controlling MN development of vertebrates during evolution, which might contribute to intricate gene regulatory networks in the emergence of a more sophisticated motor system in tetrapods.


Subject(s)
Skates, Fish , Animals , Mice , Chromatin/metabolism , Motor Neurons , Skates, Fish/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Walking , Genome
6.
Adv Neurobiol ; 28: 3-44, 2022.
Article in English | MEDLINE | ID: mdl-36066819

ABSTRACT

Spinal motoneurons are a remarkably diverse class of neurons responsible for facilitating a broad range of motor behaviors and autonomic functions. Studies of motoneuron differentiation have provided fundamental insights into the developmental mechanisms of neuronal diversification, and have illuminated principles of neural fate specification that operate throughout the central nervous system. Because of their relative anatomical simplicity and accessibility, motoneurons have provided a tractable model system to address multiple facets of neural development, including early patterning, neuronal migration, axon guidance, and synaptic specificity. Beyond their roles in providing direct communication between central circuits and muscle, recent studies have revealed that motoneuron subtype-specific programs also play important roles in determining the central connectivity and function of motor circuits. Cross-species comparative analyses have provided novel insights into how evolutionary changes in subtype specification programs may have contributed to adaptive changes in locomotor behaviors. This chapter focusses on the gene regulatory networks governing spinal motoneuron specification, and how studies of spinal motoneurons have informed our understanding of the basic mechanisms of neuronal specification and spinal circuit assembly.


Subject(s)
Motor Neurons , Spinal Cord , Humans , Muscles , Neurogenesis
7.
Curr Top Dev Biol ; 147: 595-630, 2022.
Article in English | MEDLINE | ID: mdl-35337464

ABSTRACT

The vast majority of extant vertebrate diversity lies within the bony and cartilaginous fish lineages of jawed vertebrates. There is a long history of elegant experimental investigation of development in bony vertebrate model systems (e.g., mouse, chick, frog and zebrafish). However, studies on the development of cartilaginous fishes (sharks, skates and rays) have, until recently, been largely descriptive, owing to the challenges of embryonic manipulation and culture in this group. This, in turn, has hindered understanding of the evolution of developmental mechanisms within cartilaginous fishes and, more broadly, within jawed vertebrates. The little skate (Leucoraja erinacea) is an oviparous cartilaginous fish and has emerged as a powerful and experimentally tractable developmental model system. Here, we discuss the collection, husbandry and management of little skate brood stock and eggs, and we present an overview of key stages of skate embryonic development. We also discuss methods for the manipulation and culture of skate embryos and illustrate the range of tools and approaches available for studying this system. Finally, we summarize a selection of recent studies on skate development that highlight the utility of this system for inferring ancestral anatomical and developmental conditions for jawed vertebrates, as well as unique aspects of cartilaginous fish biology.


Subject(s)
Sharks , Skates, Fish , Animals , Embryonic Development , Jaw , Mice , Zebrafish
8.
Elife ; 112022 01 07.
Article in English | MEDLINE | ID: mdl-34994686

ABSTRACT

Polycomb repressive complexes (PRCs) 1 and 2 maintain stable cellular memories of early fate decisions by establishing heritable patterns of gene repression. PRCs repress transcription through histone modifications and chromatin compaction, but their roles in neuronal subtype diversification are poorly defined. We found that PRC1 is essential for the specification of segmentally restricted spinal motor neuron (MN) subtypes, while PRC2 activity is dispensable to maintain MN positional identities during terminal differentiation. Mutation of the core PRC1 component Ring1 in mice leads to increased chromatin accessibility and ectopic expression of a broad variety of fates determinants, including Hox transcription factors, while neuronal class-specific features are maintained. Loss of MN subtype identities in Ring1 mutants is due to the suppression of Hox-dependent specification programs by derepressed Hox13 paralogs (Hoxa13, Hoxb13, Hoxc13, Hoxd13). These results indicate that PRC1 can function in the absence of de novo PRC2-dependent histone methylation to maintain chromatin topology and postmitotic neuronal fate.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Motor Neurons/metabolism , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 2/genetics , Animals , Animals, Genetically Modified , Chickens , Mice , Polycomb Repressive Complex 1/metabolism , Polycomb Repressive Complex 2/metabolism
9.
Development ; 147(22)2020 11 23.
Article in English | MEDLINE | ID: mdl-33028607

ABSTRACT

Although Hox genes encode for conserved transcription factors (TFs), they are further divided into anterior, central and posterior groups based on their DNA-binding domain similarity. The posterior Hox group expanded in the deuterostome clade and patterns caudal and distal structures. We aimed to address how similar Hox TFs diverge to induce different positional identities. We studied Hox TF DNA-binding and regulatory activity during an in vitro motor neuron differentiation system that recapitulates embryonic development. We found diversity in the genomic binding profiles of different Hox TFs, even among the posterior group paralogs that share similar DNA-binding domains. These differences in genomic binding were explained by differing abilities to bind to previously inaccessible sites. For example, the posterior group HOXC9 had a greater ability to bind occluded sites than the posterior HOXC10, producing different binding patterns and driving differential gene expression programs. From these results, we propose that the differential abilities of posterior Hox TFs to bind to previously inaccessible chromatin drive patterning diversification.This article has an associated 'The people behind the papers' interview.


Subject(s)
Cell Differentiation , Chromatin/metabolism , Embryonic Development , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Motor Neurons/metabolism , Transcription Factors/metabolism , Animals , Cell Line , Chromatin/genetics , Homeodomain Proteins/genetics , Mice , Motor Neurons/cytology , Transcription Factors/genetics
10.
Elife ; 92020 08 18.
Article in English | MEDLINE | ID: mdl-32808924

ABSTRACT

Relay of muscle-derived sensory information to the CNS is essential for the execution of motor behavior, but how proprioceptive sensory neurons (pSNs) establish functionally appropriate connections is poorly understood. A prevailing model of sensory-motor circuit assembly is that peripheral, target-derived, cues instruct pSN identities and patterns of intraspinal connectivity. To date no known intrinsic determinants of muscle-specific pSN fates have been described in vertebrates. We show that expression of Hox transcription factors defines pSN subtypes, and these profiles are established independently of limb muscle. The Hoxc8 gene is expressed by pSNs and motor neurons (MNs) targeting distal forelimb muscles, and sensory-specific depletion of Hoxc8 in mice disrupts sensory-motor synaptic matching, without affecting pSN survival or muscle targeting. These results indicate that the diversity and central specificity of pSNs and MNs are regulated by a common set of determinants, thus linking early rostrocaudal patterning to the assembly of limb control circuits.


Subject(s)
Homeodomain Proteins/metabolism , Motor Neurons/physiology , Proprioception/physiology , Animals , Chickens , Forelimb , Gene Expression Regulation , Homeodomain Proteins/genetics , Mice , Motor Neurons/cytology , Muscle, Skeletal/metabolism , Sensory Receptor Cells/physiology
12.
Cell Rep ; 27(9): 2620-2635.e4, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31141687

ABSTRACT

Coordinated motor behaviors depend on feedback communication between peripheral sensory systems and central circuits in the brain and spinal cord. Relay of muscle- and tendon-derived sensory information to the CNS is facilitated by functionally and anatomically diverse groups of spinocerebellar tract neurons (SCTNs), but the molecular logic by which SCTN diversity and connectivity is achieved is poorly understood. We used single-cell RNA sequencing and genetic manipulations to define the mechanisms governing the molecular profile and organization of SCTN subtypes. We found that SCTNs relaying proprioceptive sensory information from limb and axial muscles are generated through segmentally restricted actions of specific Hox genes. Loss of Hox function disrupts SCTN-subtype-specific transcriptional programs, leading to defects in the connections between proprioceptive sensory neurons, SCTNs, and the cerebellum. These results indicate that Hox-dependent genetic programs play essential roles in the assembly of neural circuits necessary for communication between the brain and spinal cord.


Subject(s)
Homeodomain Proteins/physiology , Motor Neurons/physiology , Nerve Net/physiology , Sensory Receptor Cells/physiology , Spinocerebellar Tracts/physiology , Animals , Female , Gene Expression Profiling , Gene Expression Regulation , Male , Mice, Knockout , Motor Neurons/cytology , Sensory Receptor Cells/cytology , Spinocerebellar Tracts/cytology
13.
Trends Neurosci ; 41(10): 648-651, 2018 10.
Article in English | MEDLINE | ID: mdl-30274599

ABSTRACT

Nervous systems control locomotion using rhythmically active networks that orchestrate motor neuron firing patterns. Whether animals use common or distinct genetic programs to encode motor rhythmicity remains unclear. Cross-species comparisons have revealed remarkably conserved neural patterning systems but have also unveiled divergent circuit architectures that can generate similar locomotor behaviors.


Subject(s)
Behavior, Animal/physiology , Locomotion/physiology , Motor Neurons/physiology , Periodicity , Spinal Cord/growth & development , Animals , Spinal Cord/physiology
14.
Neural Dev ; 13(1): 10, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29855378

ABSTRACT

Neuronal control of muscles associated with the central body axis is an ancient and essential function of the nervous systems of most animal species. Throughout the course of vertebrate evolution, motor circuits dedicated to control of axial muscle have undergone significant changes in their roles within the motor system. In most fish species, axial circuits are critical for coordinating muscle activation sequences essential for locomotion and play important roles in postural correction. In tetrapods, axial circuits have evolved unique functions essential to terrestrial life, including maintaining spinal alignment and breathing. Despite the diverse roles of axial neural circuits in motor behaviors, the genetic programs underlying their assembly are poorly understood. In this review, we describe recent studies that have shed light on the development of axial motor circuits and compare and contrast the strategies used to wire these neural networks in aquatic and terrestrial vertebrate species.


Subject(s)
Biological Evolution , Locomotion/physiology , Motor Neurons/physiology , Muscle, Skeletal/physiology , Nerve Net/physiology , Animals , Humans , Vertebrates
15.
Cell Stem Cell ; 22(4): 469-471, 2018 04 05.
Article in English | MEDLINE | ID: mdl-29625060

ABSTRACT

DNA methylation is an epigenetic mark that plays pivotal roles in gene regulation, but its functions in neural fate decisions are poorly understood. In this issue of Cell Stem Cell, Ziller et al. (2018) show that the de novo methyltransferase Dnmt3a ensures efficient generation of motor neurons from stem cells.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/genetics , DNA Methylation , Cell Differentiation , Humans , Motor Neurons , Stem Cells
16.
Cell ; 172(4): 667-682.e15, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29425489

ABSTRACT

Walking is the predominant locomotor behavior expressed by land-dwelling vertebrates, but it is unknown when the neural circuits that are essential for limb control first appeared. Certain fish species display walking-like behaviors, raising the possibility that the underlying circuitry originated in primitive marine vertebrates. We show that the neural substrates of bipedalism are present in the little skate Leucoraja erinacea, whose common ancestor with tetrapods existed ∼420 million years ago. Leucoraja exhibits core features of tetrapod locomotor gaits, including left-right alternation and reciprocal extension-flexion of the pelvic fins. Leucoraja also deploys a remarkably conserved Hox transcription factor-dependent program that is essential for selective innervation of fin/limb muscle. This network encodes peripheral connectivity modules that are distinct from those used in axial muscle-based swimming and has apparently been diminished in most modern fish. These findings indicate that the circuits that are essential for walking evolved through adaptation of a genetic regulatory network shared by all vertebrates with paired appendages. VIDEO ABSTRACT.


Subject(s)
Avian Proteins , Chickens/physiology , Evolution, Molecular , Fish Proteins , Homeodomain Proteins , Nerve Net/physiology , Skates, Fish/physiology , Transcription Factors , Walking/physiology , Zebrafish/physiology , Animal Fins/physiology , Animals , Avian Proteins/genetics , Avian Proteins/metabolism , Chick Embryo , Fish Proteins/genetics , Fish Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscle, Skeletal/physiology , Swimming/physiology , Transcription Factors/genetics , Transcription Factors/metabolism
17.
Neuron ; 97(2): 341-355.e3, 2018 01 17.
Article in English | MEDLINE | ID: mdl-29307712

ABSTRACT

Motor output varies along the rostro-caudal axis of the tetrapod spinal cord. At limb levels, ∼60 motor pools control the alternation of flexor and extensor muscles about each joint, whereas at thoracic levels as few as 10 motor pools supply muscle groups that support posture, inspiration, and expiration. Whether such differences in motor neuron identity and muscle number are associated with segmental distinctions in interneuron diversity has not been resolved. We show that select combinations of nineteen transcription factors that specify lumbar V1 inhibitory interneurons generate subpopulations enriched at limb and thoracic levels. Specification of limb and thoracic V1 interneurons involves the Hox gene Hoxc9 independently of motor neurons. Thus, early Hox patterning of the spinal cord determines the identity of V1 interneurons and motor neurons. These studies reveal a developmental program of V1 interneuron diversity, providing insight into the organization of inhibitory interneurons associated with differential motor output.


Subject(s)
Genes, Homeobox , Spinal Cord/cytology , Animals , Bayes Theorem , Forelimb/embryology , Forelimb/innervation , Gene Expression Profiling , Hindlimb/embryology , Hindlimb/innervation , Homeodomain Proteins/physiology , Interneurons/physiology , Lumbosacral Region , Mice , Mice, Knockout , Motor Neurons/physiology , Nerve Tissue Proteins/physiology , Spinal Cord/embryology , Thorax , Transcription Factors/physiology
18.
Curr Biol ; 28(2): R86-R88, 2018 01 22.
Article in English | MEDLINE | ID: mdl-29374453

ABSTRACT

Topographic maps are a basic organizational feature of nervous systems, and their construction involves both spatial and temporal cues. A recent study reports a novel mechanism of topographic map formation which relies on the timing of axon initiation.


Subject(s)
Axons , Motor Neurons
19.
Cell Rep ; 21(4): 867-877, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29069594

ABSTRACT

Control of movement relies on the ability of circuits within the spinal cord to establish connections with specific subtypes of motor neuron (MN). Although the pattern of output from locomotor networks can be influenced by MN position and identity, whether MNs exert an instructive role in shaping synaptic specificity within the spinal cord is unclear. We show that Hox transcription-factor-dependent programs in MNs are essential in establishing the central pattern of connectivity within the ventral spinal cord. Transformation of axially projecting MNs to a limb-level lateral motor column (LMC) fate, through mutation of the Hoxc9 gene, causes the central afferents of limb proprioceptive sensory neurons to target MNs connected to functionally inappropriate muscles. MN columnar identity also determines the pattern and distribution of inputs from multiple classes of premotor interneurons, indicating that MNs broadly influence circuit connectivity. These findings indicate that MN-intrinsic programs contribute to the initial architecture of locomotor circuits.


Subject(s)
Motor Neurons/physiology , Spinal Cord/physiology , Animals , Cues , Efferent Pathways/physiology , Female , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Interneurons/metabolism , Interneurons/physiology , Male , Mice , Motor Neurons/metabolism , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Proprioception , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Spinal Cord/cytology
20.
Development ; 144(19): 3547-3561, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28827394

ABSTRACT

Hoxa5 is essential for development of several organs and tissues. In the respiratory system, loss of Hoxa5 function causes neonatal death due to respiratory distress. Expression of HOXA5 protein in mesenchyme of the respiratory tract and in phrenic motor neurons of the central nervous system led us to address the individual contribution of these Hoxa5 expression domains using a conditional gene targeting approach. Hoxa5 does not play a cell-autonomous role in lung epithelium, consistent with lack of HOXA5 expression in this cell layer. In contrast, ablation of Hoxa5 in mesenchyme perturbed trachea development, lung epithelial cell differentiation and lung growth. Further, deletion of Hoxa5 in motor neurons resulted in abnormal diaphragm innervation and musculature, and lung hypoplasia. It also reproduced the neonatal lethality observed in null mutants, indicating that the defective diaphragm is the main cause of impaired survival at birth. Thus, Hoxa5 possesses tissue-specific functions that differentially contribute to the morphogenesis of the respiratory tract.


Subject(s)
Homeodomain Proteins/metabolism , Phosphoproteins/metabolism , Respiratory System/embryology , Respiratory System/metabolism , Animals , Animals, Newborn , Body Patterning/genetics , Cartilage/embryology , Cartilage/metabolism , Cell Differentiation/genetics , Crosses, Genetic , Diaphragm/innervation , Diaphragm/metabolism , Diaphragm/ultrastructure , Female , Gene Deletion , Gene Expression Regulation, Developmental , Genotype , Homeodomain Proteins/genetics , Male , Mesoderm/embryology , Mesoderm/metabolism , Models, Biological , Motor Neurons/metabolism , Muscle Development , Muscle Fibers, Skeletal/metabolism , Organ Specificity/genetics , Phosphoproteins/genetics , Respiratory Mucosa/metabolism , SOX9 Transcription Factor/metabolism , Signal Transduction/genetics , Survival Analysis , Trachea/embryology , Trachea/metabolism , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...