Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 15(11): 3061-3070, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38466659

ABSTRACT

Stereochemically active lone pair (SCALP) cations are attractive units for realizing optical anisotropy. Antimony(III) chloride perovskites with the SCALP have remained largely unknown to date. We synthesized a new vacancy ordered Cs3Sb2Cl9 perovskite single crystals with SbCl6 octahedral linkage containing the SCALP. Remarkably, all-inorganic halide perovskite Cs3Sb2Cl9 single crystals exhibit an exceptional birefringence of 0.12 ± 0.01 at 550 nm. The SCALP brings a large local structural distortion of the SbCl6 octahedra promoting birefringence optical responses in Cs3Sb2Cl9 single crystals. Theoretical calculations reveal that the considerable hybridization of Sb 5s and 5p with Cl 3p states largely contribute to the SCALP. Furthermore, the change in the Sb-Cl-Sb bond angle creates distortion in the SbCl6 octahedral arrangement in the apical and equatorial directions within the crystal structure incorporating the required anisotropy for the birefringence. This work explores pristine inorganic halide perovskite single crystals as a potential birefringent material with prospects in integrated optical devices.

2.
J Phys Condens Matter ; 33(45)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34352745

ABSTRACT

Spin-orbit effects in heavy 5dtransition metal oxides, in particular, iridates, have received enormous current interest due to the prediction as well as the realization of a plethora of exotic and unconventional magnetic properties. While a bulk of these works are based on tetravalent iridates (d5), where the counter-intuitive insulating state of the rather extended 5dorbitals are explained by invoking strong spin-orbit coupling, the recent quest in iridate research has shifted to the other valencies of Ir, of which pentavalent iridates constitute a notable representative. In contrast to the tetravalent iridates, spin-orbit entangled electrons ind4systems are expected to be confined to theJ= 0 singlet state without any resultant moment or magnetic response. However, it has been recently predicted that, magnetism ind4systems may occur via magnetic condensation of excitations across spin-orbit-coupled states. In reality, the magnetism in Ir5+systems are often quite debatable both from theoretical as well as experimental point of view. Here we provide a comprehensive overview of the spin-orbit coupledd4model systems and its implications in the studied pentavalent iridates. In particular, we review here the current experimental and theoretical understanding of the double perovskite (A2BYIrO6,A= Sr, Ba,B= Y, Sc, Gd), 6H-perovskite (Ba3MIr2O9,M= Zn, Mg, Sr, Ca), post-perovskite (NaIrO3), and hexagonal (Sr3MIrO6) iridates, along with a number of open questions that require future investigation.

3.
J Phys Condens Matter ; 33(12)2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33352534

ABSTRACT

Electronic structure and transport characteristics of coupled CdS and ZnSe quantum dots are studied using density functional theory and non equilibrium Greens function method respectively. Our investigations show that in these novel coupled dots, the Frontier occupied and unoccupied molecular orbitals are spatially located in two different parts, thereby indicating the possibility of asymmetry in electronic transport. We have calculated electronic transport through the coupled quantum dot by varying the coupling strength between the individual quantum dots in the limits of weak and strong coupling. Calculations reveal asymmetric current vs voltage curves in both the limits indicating the rectifying properties of the coupled quantum dots. Additionally we discuss the possibility to tune the switching behavior of the coupled dots by different gate geometries.

4.
J Phys Condens Matter ; 32(16): 165802, 2020 Apr 17.
Article in English | MEDLINE | ID: mdl-31822644

ABSTRACT

We have studied a Fe-based di-nuclear molecular complex having the chemical formula [{Fe(bpp)(NCS)2}2([Formula: see text]'-bipy)]·2MeOH (where bpp = [Formula: see text]-bis(pyrazol-3-yl) pyridine and [Formula: see text]'-bipy = [Formula: see text]'-bipyridine, 1) using density functional theory and model Hamiltonian approach. Our study provides insight to the pressure driven spin-crossover (SCO) phenomena observed experimentally in these systems. Upon increasing the pressure, the spin state of Fe(II) cation gradually changes from a high spin state (S =2) to a low spin (LS) state (S =0) accompanied by volume contraction. The gradual increase in pressure shrinks Fe-N bond length and also causes angular deviation of the FeN6 octahedron leading to full conversion to the LS state without global structural phase transition. We have carried out exact diagonalization study of an effective single site Hamiltonian and confirmed the importance of intramolecular interaction for SCO phenomena. We have investigated the cooperativity of the observed SCO phenomena. We have also studied the effect of Co doping on the spin state of Fe and find that the spin state of Fe has a subtle dependency on the concentration of dopant atoms. Excess Co doping pave the way towards the possibility of an intermediate spin state for Fe and can give rise to a bistable spin transition process.

5.
Phys Rev Lett ; 122(1): 016404, 2019 Jan 11.
Article in English | MEDLINE | ID: mdl-31012727

ABSTRACT

We propose the concept of a "hybridization-switching induced Mott transition" which is relevant to a broad class of ABO_{3} perovskite materials including BiNiO_{3} and PbCrO_{3} that feature extended 6s orbitals on the A-site cation (Bi or Pb), and a strong A-O covalency induced ligand hole. Using ab initio electronic structure and slave rotor theory calculations, we show that such systems exhibit a breathing phonon driven A-site to oxygen hybridization-wave instability which conspires with strong correlations on the B-site transition metal ion (Ni or Cr) to trigger a Mott insulating state. This class of systems is shown to undergo a pressure induced insulator to metal transition accompanied by a colossal volume collapse due to ligand hybridization switching.

6.
J Phys Condens Matter ; 31(18): 185802, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30721889

ABSTRACT

In the present paper, we have carried out a comparative first principles as well as model Hamiltonian study to understand the novel magnetism in 6H perovskite iridates Ba3IrTi2O9 and Ba3TiIr2O9 resulting from an unusual combination of geometrical as well as exchange frustration owing to their unique crystal geometry. Our model calculations corroborated with multipolar analysis provides a comprehensive understanding of the spin-orbit entangled [Formula: see text] pseudo-spin states in both materials. While, the [Formula: see text] character is quite robust in the former compound, it is found to be directly related to the nature of magnetism in the latter iridate. The identification of the relevant spin model for the ideal structure of Ba3IrTi2O9 suggests that the Heisenberg exchange interaction dominates the Kitaev term favoring long range magnetic order in the system in line with the ab initio study while the other iridate Ba3TiIr2O9 has the posibility to host novel spin-orbital singlet state with no resultant moment.

7.
J Phys Condens Matter ; 30(20): 205802, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29629875

ABSTRACT

Cubic half-Heusler Cu1-x Co x MnSb ([Formula: see text]) compounds have been investigated both experimentally and theoretically for their magnetic, transport and electronic properties in search of possible half metallic antiferromagnetism. The systems (Cu,Co)MnSb are of particular interest as the end member alloys CuMnSb and CoMnSb are semi metallic (SM) antiferromagnetic (AFM) and half metallic (HM) ferromagnetic (FM), respectively. Clearly, Co-doping at the Cu-site of CuMnSb introduces changes in the carrier concentration at the Fermi level that may lead to half metallic ground state but there remains a persistent controversy whether the AFM to FM transition occurs simultaneously. Our experimental results reveal that the AFM to FM magnetic transition occurs through a percolation mechanism where Co-substitution gradually suppresses the AFM phase and forces FM polarization around every dopant cobalt. As a result a mixed magnetic phase is realized within this composition range while a nearly HM band structure is developed already at the 10% Co-doping. Absence of T 2 dependence in the resistivity variation at low T-region serves as an indirect proof of opening up an energy gap at the Fermi surface in one of the spin channels. This is further corroborated by the ab initio electronic structure calculations that suggests that a nearly ferromagnetic half-metallic ground state is stabilized by Sb-p holes produced upon Co doping.

8.
Phys Rev Lett ; 116(9): 097205, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26991199

ABSTRACT

We show using detailed magnetic and thermodynamic studies and theoretical calculations that the ground state of Ba_{3}ZnIr_{2}O_{9} is a realization of a novel spin-orbital liquid state. Our results reveal that Ba_{3}ZnIr_{2}O_{9} with Ir^{5+} (5d^{4}) ions and strong spin-orbit coupling (SOC) arrives very close to the elusive J=0 state but each Ir ion still possesses a weak moment. Ab initio density functional calculations indicate that this moment is developed due to superexchange, mediated by a strong intradimer hopping mechanism. While the Ir spins within the structural Ir_{2}O_{9} dimer are expected to form a spin-orbit singlet state (SOS) with no resultant moment, substantial frustration arising from interdimer exchange interactions induce quantum fluctuations in these possible SOS states favoring a spin-orbital liquid phase down to at least 100 mK.

9.
J Phys Condens Matter ; 24(50): 505501, 2012 Dec 19.
Article in English | MEDLINE | ID: mdl-23165128

ABSTRACT

We present a detailed study of the magnetic properties of unique cluster assembled solids, namely Mn-doped Ge(46) and Ba(8)Ge(46) clathrates using density functional theory. We find that ferromagnetic ground states may be realized in both compounds when doped with Mn. In Mn(2)Ge(44), ferromagnetism is driven by hybridization-induced negative exchange splitting, a generic mechanism operating in many diluted magnetic semiconductors. However, for Mn-doped Ba(8)Ge(46) clathrates incorporation of conduction electrons via Ba encapsulation results in RKKY-like magnetic interactions between the Mn ions. We show that our results are consistent with the major experimental observations for this system.

SELECTION OF CITATIONS
SEARCH DETAIL
...