Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Phytoremediation ; 26(2): 193-207, 2024.
Article in English | MEDLINE | ID: mdl-37417937

ABSTRACT

The hyper-accumulation of chromium in its hexavalent form is treated as a hazardous soil pollutant at industrial and mining sites. Excessive accumulation of Cr6+ in soil threatens the environmental health and safety of living organisms. Out of two stable forms of chromium, Cr6+ is highly responsible for ecotoxicity. The expression of the high toxicity of Cr6+ at low concentrations in the soil environment indicates its lethality. It is usually released into the soil during various socio-economic activities. Sustainable remediation of Cr6+ contaminated soil is of utmost need and can be carried out by employing suitable plant hyperaccumulators. Alongside the plant's ability to sequester toxic metals like Cr6+, the rhizospheric soil parameters play a significant role in this technique and are mostly overlooked. Here we review the application of a cost-effective and eco-friendly remediation technology at hyperaccumulators rhizosphere to minimize the Cr6+ led soil toxicity. The use of selected plant species along with effective rhizospheric activities has been suggested as a technique to reduce Cr6+ toxicity on soil and its associated biota. This soil rectification approach may prove to be sustainable and advantageous over other possible techniques. Further, it may open up new solutions for soil Cr6+ management at polluted sites.


Phytoremediation is an eco-friendly technology that has been widely used for the treatment of Cr6+ contaminated soils. Most of the phytoremedial studies either focus on the ability of plant hyperaccumulators alone or in association with rhizospheric microbes for the successful remediation of Cr6+. The current study lays emphasis on different soil parameters and interactions (both biotic and abiotic) at the plant rhizosphere that is much essential for providing a sustainable remedial solution for Cr6+ contaminated soils.


Subject(s)
Chromium , Soil Pollutants , Chromium/toxicity , Chromium/metabolism , Soil , Biodegradation, Environmental , Plants/metabolism , Soil Pollutants/metabolism
2.
Life (Basel) ; 13(1)2023 Jan 09.
Article in English | MEDLINE | ID: mdl-36676144

ABSTRACT

Primary apical periodontitis occurs due to various insults to the dental pulp including microbial infections, physical and iatrogenic trauma, whereas inadequate elimination of intraradicular infection during root canal treatment may lead to secondary apical periodontitis. We explored the complex intra-radicular microbial communities and their functional potential through genome reconstruction. We applied shotgun metagenomic sequencing, binning and functional profiling to identify the significant contributors to infection at the acute and chronic apical periodontal lesions. Our analysis revealed the five classified clusters representing Enterobacter, Enterococcus, Lacticaseibacillus, Pseudomonas, Streptococcus and one unclassified cluster of contigs at the genus level. Of them, the major contributors were Pseudomonas, with 90.61% abundance in acute conditions, whereas Enterobacter followed by Enterococcus with 69.88% and 15.42% abundance, respectively, in chronic conditions. Enterobacter actively participated in antibiotic target alteration following multidrug efflux-mediated resistance mechanisms, predominant in the chronic stage. The prediction of pathways involved in the destruction of the supportive tissues of the tooth in Enterobacter and Pseudomonas support their crucial role in the manifestation of respective disease conditions. This study provides information about the differential composition of the microbiome in chronic and acute apical periodontitis. It takes a step to interpret the role of a single pathogen, solely or predominantly, in establishing endodontic infection types through genome reconstruction following high throughput metagenomic DNA analysis. The resistome prediction sheds a new light on the therapeutic treatment guidelines for endodontists. However, it needs further conclusive research to support this outcome using a larger number of samples with similar etiological conditions, but different demographic origin.

SELECTION OF CITATIONS
SEARCH DETAIL
...