Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 926: 171981, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38547997

ABSTRACT

Floating Vegetated System (FVS) emerged as a green and sustainable technology, presenting a viable solution for treating heavy metals (HMs) contaminated water without disrupting the food web. Pistia stratiotes has been used in the design of FVS due to its abundance of aerenchyma tissues, which contribute to its ability to remain buoyant. FVS exhibited significant HMs removal efficiencies, with Pb top at average 84.4 %, followed by Zn (81.1 %), Cr (78.5 %), Cu (76.5 %) and Ni (73 %). Bio-concentration Factor (BCF) and Translocation Factor (TF) values evaluated the plant's adeptness in metal uptake. For plants treated with Cu, the highest post-treatment chlorophyll content of 9 ± 1 mg.ml-1 was observed while Zn induced plant shows the lowest content of 7.1 ± 0.4 mg.ml-1. Using Box-Behnken Design (BBD), the system achieved 81.48 % Pb removal under optimized conditions such as initial Pb conc. of 9.25 mg. l-1, HRT of 24.49 days and a water depth of 26.52 cm. ANOVA analysis highlighted the significant impact of all the factors such as initial HM conc., HRT and wastewater depth on FVS performance. Kinetic analysis estimated a closer observance to the zero-order model, supported by high determination coefficient (R2) values. In conclusion, the FVS, as one of the most eco-friendly technologies, demonstrates higher potential for treating polluted water bodies, offering a sustainable remedy to global metal pollution challenges. Research on FVS for HMs removal is an area of ongoing interest and there are several potential future studies that could be pursued to further understand and optimize their effectiveness such as optimization of plant species, enhancement of plant-metal interactions, effects of environmental factors, economic feasibility studies, disposal of heavy metals accumulated plant, scale-up and application in real-world settings, etc.


Subject(s)
Araceae , Metals, Heavy , Water Pollutants, Chemical , Lead , Kinetics , Water Pollutants, Chemical/analysis , Metals, Heavy/analysis , Water , Zinc/analysis
2.
J Environ Manage ; 308: 114668, 2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35152038

ABSTRACT

Waste stabilization pond (WSP) is natural technology which can be installed in centralized or semi-centralized sewerage systems for treatment of domestic and industrial wastewater, septage and sludge, etc. WSPs are highly efficient, simple to construct, low cost and easy to operate. It can be used as secondary or tertiary treatment unit in a treatment plant either individually or in a coupling manner. The algal-bacterial symbiosis in WSP makes it completely natural treatment process for which it becomes economic as compared to other treatment technologies in terms of its maintenance cost and energy requirement. Effluent from WSP can also be used for agricultural purpose, gardening, watering road, vehicle wash, etc. Advance technologies are being integrated for better design and efficiency of WSP, but the main challenges are the separation and removal of algal species which lead to deterioration of the water if stays long. Research is necessary to maximize algal growth yield, selection of beneficial strain and optimizing harvesting methods. This review focuses on the treatment mechanism in the pond, affecting factors, types of ponds, design equation, cost analysis.


Subject(s)
Wastewater , Water Purification , Costs and Cost Analysis , Ponds , Sewage/microbiology , Waste Disposal, Fluid/methods , Wastewater/microbiology , Water Purification/methods
3.
J Environ Manage ; 296: 113246, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34271353

ABSTRACT

Nitrogen and phosphorous are indispensable for growth and vitality of living beings, hence termed as nutrients. However, discharge of nutrient rich waste streams to aquatic ecosystems results in eutrophication. Therefore, nutrient removal from wastewater is crucial to meet the strict nutrient discharge standards. Similarly, nutrient recovery from waste streams is vital for the realization of a circular economy by avoiding the depletion of finite resources. This manuscript presents analysis of existing information on different conventional as well as advanced treatment technologies that are commonly practiced for the removal of nutrient from domestic wastewater. First, the information pertaining to the biological nutrient removal technologies are discussed. Second, onsite passive nutrient removal technologies are reviewed comprehensively. Third, advanced nutrient removal technologies are summarized briefly. The mechanisms, advantages, and disadvantages of these technologies along with their efficiencies and limitations are discussed. An integrated approach for simultaneous nutrient removal and recovery is recommended. The fifth section of the review highlights bottlenecks and potential solutions for successful implementation of the nutrient removal technologies. It is anticipated that the review will offer an instructive overview of the progress in nutrient removal and recovery technologies and will illustrate necessity of further investigations for development of efficient nutrient removal and recovery processes.


Subject(s)
Ecosystem , Wastewater , Bioreactors , Denitrification , Nitrogen , Nutrients , Phosphorus , Waste Disposal, Fluid
4.
Water Environ Res ; 92(2): 222-235, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31368608

ABSTRACT

Disturbingly high rates of consumption of surfactants in household and industries have led to mark them as emerging contaminants in the environment. In the present work, removal of sodium dodecyl sulfate (SDS), an anionic surfactant, using an industrial waste (dolochar) was explored. The adsorbent material was characterized with the help of Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). Kinetic evaluation was performed using first, pseudo-first, second, and pseudo-second order models. Adsorption of SDS over dolochar was expressed best by pseudo-second order kinetic model with regression coefficient (R2 ) of .99. Three input parameters including adsorbent dose (20-10 g/L), initial concentration (30-100 mg/L) of the surfactant, and contact time (2-60 min) were chosen for optimization using response surface methodology based on Box-Behnken design (BBD) approach. A total of 15 experiments were run to examine the effect of these variables on removal of SDS by dolochar in a multivariate system. A regression analysis indicated the experimental data fitted well to a quadratic polynomial model with coefficient of regression (R2 ) as .99. ANOVA and lack-of-fit test depicted the precision and efficiency of the model. The optimized conditions for SDS removal were found to be adsorbent dose 16.62 g/L, contact time 40 min, and initial concentration 47 mg/L with removal efficiency as 98.91%. PRACTITIONER POINTS: Daily ablutions and use of personal care products introduce a number of surfactants and recalcitrant compounds into the environment. Adsorption is a handy and easy to operate treatment technique to remove graywater pollutants. Kinetic and statistical modeling may be recommended as one of the most prominent tools to understand the removal mechanism. Decentralized treatment of graywater using industrial wastes is recommended as sustainable solution in the developing nations.


Subject(s)
Water Pollutants, Chemical , Adsorption , Hydrogen-Ion Concentration , Kinetics , Models, Statistical , Spectroscopy, Fourier Transform Infrared , Surface-Active Agents
5.
J Environ Manage ; 247: 140-151, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31247361

ABSTRACT

With increasing urbanization and industrialization, the scarcity of freshwater is becoming rampant. To counteract this, authorities all over the world are forced to consider the treatment and reuse of the wastewater produced by either industries or domestic units. After an extensive literature survey, vermifiltration coupled with/without macrophyte has been identified as one of the best sustainable, natural and eco-friendly technology for the treatment and reuse of wastewater. Till date, it has been successfully applied for treating domestic wastewater. However, the results from very limited industrial applications are also encouraging and proving its worth for industrial wastewater remediation. The present review on vermifiltration deals with the mechanisms involved and its current status for the remediation and reutilisation of the effluents generated from domestic and industrial premises. The review successfully identifies and explicitly discusses the mechanisms involved in the vermifiltration. The review exhaustively discusses the performance of vermifiltration and identifies the factors contributing to the performance of vermifiltration, which could be of help in designing of the field scale vermifilter based treatment plant. The review identifies the limitations associated with the vermifiltration and suggests possible alternatives, aimed to improve its performance and applicability. The aim of this review is to bring the attention of prospective researchers to study each and every aspect related to the vermifiltration so that it may be adopted as a reliable and dependable technology for the remediation of several industrial effluents meeting the concept of "Zero discharge".


Subject(s)
Waste Disposal, Fluid , Wastewater , Industry , Prospective Studies , Technology
6.
Sci Total Environ ; 645: 156-169, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30016709

ABSTRACT

Global urbanization, exponential increase in population and sophisticated life style of the present generation are the major causes leading to a rapid increase in water demand in recent years. In order to nullify this rising water demand, it's high time to reuse domestic as well as industrial effluent after providing suitable chemical/biological treatment. Macrophyte filter incorporated with earthworm is identified as one of the most economic system for the treatment purpose in developing countries. However, very few literatures and technical information are available to scale up the design and its easy operation. This paper aims to develop a hybrid system and assess its performance for the purification of dairy wastewater. In the present study, two stage macrophyte assisted vermifilters (MAVFs) have been designed. The 1st stage encompassed a vertical flow (VF) unit, and the 2nd stage contained a horizontal flow (HF) unit. Both the units were inoculated with earthworm Eisenia fetida and were planted with Canna indica. Box-Behnken model was applied to design the system and study the effect of various parameters. It was observed that hybrid MAVF system removed a maximum of 83.2% COD and 57.3% TN at HLR 0.6 m/d and an active layer depth of 30 cm. Ammonification and nitrification typically occurred in the active layer (earthworm inoculated zone) of VF unit due to high activity of earthworms and its associated gut microbes, whereas HF unit facilitate denitrification process. Earthworm growth characteristics in the system were monitored, which is an imperative factor for the design of MAVF reactor. Kinetic modelling of 1st order, grau 2nd order and Stover-Kincannon model were performed and the Stover-Kincannon model showed high regression coefficient (COD, R2 0.9961 and TN, R2 0.9353) supporting its applicability as compared to the other models.

7.
Bioresour Technol ; 262: 251-260, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29715628

ABSTRACT

This work evaluates the performance efficiency of a newly developed single unit packed bed bioreactor for nutrient removal from domestic wastewater. The packing materials, including dolochar, and a mixture of waste organic solid substance, were immobilized with a simultaneous nitrifying, denitrifying and phosphate removing bacterial strain, Bacillus cereus GS-5 and packed in the bioreactor alternatively in multiple layers. The bioreactor was operated continuously for a period of 70 days using both synthetic and real domestic wastewater (NH4+-N 30-100 mg/L, NO3--N 10-100 mg/L, PO43--P 5-20 mg/L and COD 250-1000 mg/L). The innovative single unit bioreactor exhibited simultaneous removal of NH4+-N (87.1-93.1%), NO3--N (69.4-88.4%), PO43--P (84-100%), and even COD (69.8-92.1%), in a remarkable disparity to traditional distinct aerobic-anaerobic treatment systems. This work advocated for a promising and feasible application prospect of the developed single unit packed bed bioreactor in domestic wastewater treatment emphasizing on nutrient removal.


Subject(s)
Bacillus cereus , Bioreactors , Denitrification , Nitrogen , Waste Disposal, Fluid , Wastewater
8.
Bioresour Technol ; 244(Pt 1): 484-495, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28803098

ABSTRACT

A newly isolated GS-5 strain exhibiting heterotrophic nitrification, aerobic denitrification and denitrifying phosphorous removal was identified as Bacillus cereus GS-5 based on its phenotypic and phylogenetic characteristics. The isolate had exhibited efficient NH4+-N, NO3--N, NO2--N and PO43--P removal from nutrient spiked real domestic wastewater with average rates of 2.62, 2.69, 1.16 and 0.42mgL-1h-1, respectively under aerobic condition. Metabolic inhibitor based mass balance analysis indicated that dinitrogen gas (41%), intracellular nitrogen (29%) and intracellular phosphorous (60%) were the major fates of the initial NH4+-N and PO43--P. The successfully expression of hydroxylamine oxidase (hao), nitrate reductase (nar), nitrite reductase (nir) and poly phosphate kinase (ppk) enzyme in the cell free extracts and PCR amplification of nar, nir and ppk genes in the isolated strain provided further evidences for the nutrient removal possibility. A possible pathway of for nitrogen removal by GS-5 is suggested.


Subject(s)
Denitrification , Wastewater , Aerobiosis , Bacillus cereus , Heterotrophic Processes , Nitrification , Nitrogen , Phylogeny
9.
J Environ Manage ; 93(1): 154-68, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22054582

ABSTRACT

Textile industry is one of the most chemically intensive industries on the earth and the major polluter of potable water. It generates huge quantities of complex chemical substances as a part of unused materials including dyes in the form of wastewater during various stages of textile processing. The direct discharge of this wastewater into environment affects its ecological status by causing various undesirable changes. As environmental protection becomes a global concern, industries are finding novel solutions for developing technologies that can diminish the environmental damage. However, colour removal from textile wastewater by means of cheaper and environmental friendly technologies is still a major challenge. In this manuscript, several options of decolourisation of textile wastewater by chemical means have been reviewed. Based on the present review, some novel pre-hydrolysed coagulants such as Polyaluminium chloride (PACl), Polyaluminium ferric chloride (PAFCl), Polyferrous sulphate (PFS) and Polyferric chloride (PFCl) have been found to be more effective and suggested for decolourisation of the textile wastewater. Moreover, use of natural coagulants for textile wastewater treatment has also been emphasised and encouraged as the viable alternative because of their eco-friendly nature.


Subject(s)
Chemical Precipitation , Coloring Agents , Industrial Waste , Textile Industry , Water Pollutants, Chemical , Water Purification/methods , Coloring Agents/adverse effects , Coloring Agents/analysis , Coloring Agents/chemistry , Flocculation , Industrial Waste/adverse effects , Industrial Waste/analysis , Water Pollutants, Chemical/adverse effects , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry
10.
J Hazard Mater ; 163(1): 1-11, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-18657360

ABSTRACT

Cyanides are produced by certain bacteria, fungi, and algae, and may be found in plants and some foods, such as lima beans and almonds. Although cyanides are present in small concentrations in these plants and microorganisms, their large-scale presence in the environment is attributed to the human activities as cyanide compounds are extensively used in industries. Bulk of cyanide occurrence in environment is mainly due to metal finishing and mining industries. Although cyanide can be removed and recovered by several processes, it is still widely discussed and examined due to its potential toxicity and environmental impact. From an economic standpoint, the biological treatment method is cost-effective as compared to chemical and physical methods for cyanide removal. Several microbial species can effectively degrade cyanide into less toxic products. During metabolism, they use cyanide as a nitrogen and carbon source converting it to ammonia and carbonate, if appropriate conditions are maintained. Biological treatment of cyanide under anaerobic as well as aerobic conditions is possible. The present review describes the mechanism and advances in the use of biological treatment for the removal of cyanide compounds and its advantages over other treatment processes. It also includes various microbial pathways for their removal.


Subject(s)
Cyanides/isolation & purification , Cyanides/metabolism , Industrial Waste , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/metabolism , Biodegradation, Environmental
11.
J Hazard Mater ; 152(1): 387-96, 2008 Mar 21.
Article in English | MEDLINE | ID: mdl-17706348

ABSTRACT

This paper presents process review and comparative study of biodegradation and adsorption alone with simultaneous adsorption and biodegradation (SAB) process using Pseudomonas fluorescens. Ferrocyanide solution was used for all studies with initial CN(-) concentrations of 50, 100, 200 and 300mg/L, and initial pH of 6. Pseudomonas fluorescens used ferrocyanide as sole source of nitrogen and biodegradation efficiency was observed as 96.4, 94.1, 86.2 and 69.3%, respectively after 60h of agitation. Whereas in adsorption process with granular activated carbon (GAC) as adsorbent, CN(-) removal efficiency was found to be 85.6, 80.1, 70.2 and 50.2%, respectively. But in SAB process the removal efficiency could be more than 70% for all concentrations only at 36h of agitation and achieved removal efficiency of 99.9% for 50 and 100mgCN(-)/L. It was found that SAB process is more effective than biodegradation and adsorption alone.


Subject(s)
Cyanides/metabolism , Metals/metabolism , Pseudomonas fluorescens/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Culture Media , Hydrogen-Ion Concentration , Microscopy, Electron, Scanning , Pseudomonas fluorescens/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...