Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Mol Biol Plants ; 28(6): 1217-1232, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35910441

ABSTRACT

Assessing genetic diversity and development of a core set of elite breeding lines is a prerequisite for selective hybridization programes intended to improve the yield potential in rice. In the present study, the genetic diversity of newly developed elite lines derived from indicax tropical japonica and indicax indica crosses were estimated by 38 reported molecular markers. The markers used in the study consist of 24 gene-based and 14 random markers related to grain yield-related QTLs distributed across the rice genome. Genotypic characterization was carried out to determine the genetic similarities between the elite lines. In total, 75 alleles were found using 38 polymorphic markers, with polymorphism information content ranging from 0.10 to 0.51 with an average of 0.35. The genotypes were divided into three groups based on cluster analysis, structure analysis and also dispersed throughout the quadrangle of PCA, but nitrogen responsive lines clustered in one quadrangle. Seven markers (GS3_RGS1, GS3_RGS2, GS5_Indel1, Ghd 7_05SNP, RM 12289, RM 23065 and RM 25457) exhibited PIC values ≥ 0.50 indicating that they were effective in detecting genetic relationships among elite rice. Additionally, a core set of 11 elite lines was made from 96 lines in order to downsize the diversity of the original population into a small set for parental selection. In general, the genetic information collected in this work will aid in the study of grain yield traits at molecular level for other sets of rice genotypes and for selecting diverse elite lines to develop a strong crossing programme in rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01190-8.

2.
PLoS One ; 15(4): e0230958, 2020.
Article in English | MEDLINE | ID: mdl-32294092

ABSTRACT

Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.


Subject(s)
MicroRNAs/genetics , Oryza/genetics , Salt Tolerance/genetics , Blotting, Northern/methods , Gene Expression Regulation, Plant/genetics , High-Throughput Nucleotide Sequencing/methods , Oxidative Stress/genetics , Salinity , Seedlings/genetics , Stress, Physiological/genetics , Transcription Factors/genetics
3.
BMC Plant Biol ; 18(1): 89, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29783938

ABSTRACT

BACKGROUND: Poor filling of grains in the basal spikelets of large size panicles bearing numerous spikelets has been a major limitation in attempts to increase the rice production to feed the world's increasing population. Considering that biotechnological intervention could play important role in overcoming this limitation, the role of cytokinin in grain filling was investigated based on the information on cell proliferating potential of the hormone and reports of its high accumulation in immature seeds. RESULTS: A comparative study considering two rice varieties differing in panicle compactness, lax-panicle Upahar and compact-panicle OR-1918, revealed significant difference in grain filling, cytokinin oxidase (CKX) activity and expression, and expression of cell cycle regulators and cytokinin signaling components between the basal and apical spikelets of OR-1918, but not of Upahar. Exogenous application of cytokinin (6-Benzylaminopurine, BAP) to OR-1918 improved grain filling significantly, and this was accompanied by a significant decrease in expression and activity of CKX, particularly in the basal spikelets where the activity of CKX was significantly higher than that in the apical spikelets. Cytokinin application also resulted in significant increase in expression of cell cycle regulators like cyclin dependent kinases and cyclins in the basal spikelets that might be facilitating cell division in the endosperm cells by promoting G1/S phase and G2/M phase transition leading to improvement in grain filling. Expression studies of type-A response regulator (RR) component of cytokinin signaling indicated possible role of OsRR3, OsRR4 and OsRR6 as repressors of CKX expression, much needed for an increased accumulation of CK in cells. Furthermore, the observed effect of BAP might not be solely because of it, but also because of induced synthesis of trans-zeatin (tZ) and N6-(Δ2-isopentenyl)adenine (iP), as reflected from accumulation of tZR (tZ riboside) and iPR (iP riboside), and significantly enhanced expression of an isopentenyl transferase (IPT) isoform. CONCLUSION: The results suggested that seed-specific overexpression of OsRR4 and OsRR6, and more importantly of IPT9 could be an effective biotechnological intervention towards improving the CK level of the developing caryopses leading to enhanced grain filling in rice cultivars bearing large panicles with numerous spikelets, and thereby increasing their yield potential.


Subject(s)
Cytokinins/pharmacology , Edible Grain/drug effects , Oryza/drug effects , Benzyl Compounds/pharmacology , Cell Count , Edible Grain/growth & development , Edible Grain/metabolism , Endosperm/cytology , Endosperm/drug effects , Endosperm/growth & development , Endosperm/ultrastructure , Flow Cytometry , Oryza/growth & development , Oryza/metabolism , Oryza/ultrastructure , Oxidoreductases/metabolism , Purines/pharmacology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...