Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Front Med (Lausanne) ; 10: 1259995, 2023.
Article in English | MEDLINE | ID: mdl-38093984

ABSTRACT

Human immunodeficiency virus type 1 (HIV-1) remains a significant challenge for global public health as limited therapeutic options are available for HIV-infected individuals receiving combination antiretroviral therapy. Additionally, individuals with HIV-1/acquired immunodeficiency syndrome (AIDS) complications have a reduced life expectancy. In recent decades, gene and cell-based strategies have shown promise in achieving a functional cure for HIV-1 infection. The outcomes of therapies with patients in Berlin and London have led to moderate optimism for a highly effective HIV-1 treatment. This review categorizes current strategies for HIV-1 treatment into RNA- and antibody-based therapies, cell and genome editing approaches, and methods for eradicating latent reservoirs. These findings demonstrate how the use of various anti-HIV-1 agents enhances our understanding of HIV-1 infection and may provide important insights for potential HIV-1 treatment.

2.
Int J Mol Sci ; 24(22)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38003233

ABSTRACT

Trisomy is the presence of one extra copy of an entire chromosome or its part in a cell nucleus. In humans, autosomal trisomies are associated with severe developmental abnormalities leading to embryonic lethality, miscarriage or pronounced deviations of various organs and systems at birth. Trisomies are characterized by alterations in gene expression level, not exclusively on the trisomic chromosome, but throughout the genome. Here, we applied the high-throughput chromosome conformation capture technique (Hi-C) to study chromatin 3D structure in human chorion cells carrying either additional chromosome 13 (Patau syndrome) or chromosome 16 and in cultured fibroblasts with extra chromosome 18 (Edwards syndrome). The presence of extra chromosomes results in systematic changes of contact frequencies between small and large chromosomes. Analyzing the behavior of individual chromosomes, we found that a limited number of chromosomes change their contact patterns stochastically in trisomic cells and that it could be associated with lamina-associated domains (LAD) and gene content. For trisomy 13 and 18, but not for trisomy 16, the proportion of compacted loci on a chromosome is correlated with LAD content. We also found that regions of the genome that become more compact in trisomic cells are enriched in housekeeping genes, indicating a possible decrease in chromatin accessibility and transcription level of these genes. These results provide a framework for understanding the mechanisms of pan-genome transcription dysregulation in trisomies in the context of chromatin spatial organization.


Subject(s)
Cell Nucleus , Trisomy , Infant, Newborn , Humans , Trisomy/genetics , Cell Nucleus/metabolism , Chromatin/genetics , Chromatin/metabolism , Genetic Testing , Trisomy 13 Syndrome/genetics
3.
Sci Rep ; 13(1): 20896, 2023 11 28.
Article in English | MEDLINE | ID: mdl-38017073

ABSTRACT

The rete testis (RT) is a region of the mammalian testis that plays an important role in testicular physiology. The RT epithelium consists of cells sharing some well-known gene markers with supporting Sertoli cells (SCs). However, little is known about the differences in gene expression between these two cell populations. Here, we used fluorescence-activated cell sorting (FACS) to obtain pure cultures of neonatal RT cells and SCs and identified differentially expressed genes (DEGs) between these cell types using RNA sequencing (RNA-seq). We then compared our data with the RNA-seq data of other studies that examined RT cells and SCs of mice of different ages and generated a list of DEGs permanently upregulated in RT cells throughout testis development and in culture, which included 86 genes, and a list of 79 DEGs permanently upregulated in SCs. The analysis of studies on DMRT1 function revealed that nearly half of the permanent DEGs could be regulated by this SC upregulated transcription factor. We suggest that useful cell lineage markers and candidate genes for the specification of both RT cells and SCs may be present among these permanent DEGs.


Subject(s)
Rete Testis , Sertoli Cells , Male , Mice , Animals , Sertoli Cells/metabolism , Rete Testis/metabolism , Testis/metabolism , Gene Expression Regulation , Base Sequence , Mammals
4.
Int J Mol Sci ; 24(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37629167

ABSTRACT

Clear cell renal cell carcinoma (ccRCC) accounts for 80-90% of kidney cancers worldwide. Small C-terminal domain phosphatases CTDSP1, CTDSP2, and CTDSPL (also known as SCP1, 2, 3) are involved in the regulation of several important pathways associated with carcinogenesis. In various cancer types, these phosphatases may demonstrate either antitumor or oncogenic activity. Tumor-suppressive activity of these phosphatases in kidney cancer has been shown previously, but in general case, the antitumor activity may be dependent on the choice of cell line. In the present work, transfection of the Caki-1 cell line (ccRCC morphologic phenotype) with expression constructs containing the coding regions of these genes resulted in inhibition of cell growth in vitro in the case of CTDSP1 (p < 0.001) and CTDSPL (p < 0.05) but not CTDSP2. The analysis of The Cancer Genome Atlas (TCGA) data showed differential expression of some of CTDSP genes and of their target, RB1. These results were confirmed by quantitative RT-PCR using an independent sample of primary ccRCC tumors (n = 52). We observed CTDSPL downregulation and found a positive correlation of expression for two gene pairs: CTDSP1 and CTDSP2 (rs = 0.76; p < 0.001) and CTDSPL and RB1 (rs = 0.38; p < 0.05). Survival analysis based on TCGA data demonstrated a strong association of lower expression of CTDSP1, CTDSP2, CTDSPL, and RB1 with poor survival of ccRCC patients (p < 0.001). In addition, according to TCGA, CTDSP1, CTDSP2, and RB1 were differently expressed in two subtypes of ccRCC-ccA and ccB, characterized by different survival rates. These results confirm that CTDSP1 and CTDSPL have tumor suppressor properties in ccRCC and reflect their association with the more aggressive ccRCC phenotype.


Subject(s)
Blood Group Antigens , Carcinoma, Renal Cell , Carcinoma , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/genetics , Phosphoric Monoester Hydrolases , Genes, Tumor Suppressor , Kidney Neoplasms/genetics
5.
Front Mol Neurosci ; 16: 1037902, 2023.
Article in English | MEDLINE | ID: mdl-37201156

ABSTRACT

Introduction: Culturing of human neural stem cells (NSCs) derived from induced pluripotent stem cells (iPSC) is a promising area of research, as these cells have the potential to treat a wide range of neurological, neurodegenerative and psychiatric diseases. However, the development of optimal protocols for the production and long-term culturing of NSCs remains a challenge. One of the most important aspects of this problem is to determine the stability of NSCs during long-term in vitro passaging. To address this problem, our study was aimed at investigating the spontaneous differentiation profile in different iPSC-derived human NSCs cultures during long-term cultivation using. Methods: Four different IPSC lines were used to generate NSC and spontaneously differentiated neural cultures using DUAL SMAD inhibition. These cells were analyzed at different passages using immunocytochemistry, qPCR, bulk transcriptomes and scRNA-seq. Results: We found that various NSC lines generate significantly different spectrums of differentiated neural cells, which can also change significantly during long-term cultivation in vitro. Discussion: Our results indicate that both internal (genetic and epigenetic) and external (conditions and duration of cultivation) factors influence the stability of NSCs. These results have important implications for the development of optimal NSCs culturing protocols and highlight the need to further investigate the factors influencing the stability of these cells in vitro.

6.
Mol Reprod Dev ; 89(5-6): 243-255, 2022 05.
Article in English | MEDLINE | ID: mdl-35478364

ABSTRACT

Sertoli cells are key somatic cells in the testis that form seminiferous tubules and support spermatogenesis. The isolation of pure Sertoli cells is important for their study. However, it is a difficult effort because of the close association of Sertoli cells with peritubular myoid cells surrounding seminiferous tubules. Here, we propose a novel approach to the establishment of a pure Sertoli cell culture from immature mouse testes. It is based on the staining of testicular cells for platelet-derived growth factor receptor alpha (PDGFRA), followed by fluorescence-activated cell sorting and culturing of a PDGFRA-negative cell population. Cells positive for a Sertoli cell marker WT1 accounted for more than 96% of cells in cultures from 6 to 12 days postpartum (dpp) mice. The numbers of peritubular myoid cells identified by ACTA2 staining did not exceed 4%. Cells in the cultures were also positive for Sertoli cell proteins SOX9 and DMRT1. Amh and Hsd17b3 expression decreased and Ar and Gata1 expression increased in 12 dpp cultures compared to 6 dpp cultures, which suggests that cultured Sertoli cells at least partially retained their differentiation status. This method can be employed in various applications including the analysis of differential gene expression and functional studies.


Subject(s)
Seminiferous Tubules , Sertoli Cells , Animals , Cells, Cultured , Female , Male , Mice , Receptor Protein-Tyrosine Kinases , Sertoli Cells/metabolism , Spermatogenesis/physiology , Staining and Labeling , Testis/metabolism
7.
Front Mol Biosci ; 9: 805931, 2022.
Article in English | MEDLINE | ID: mdl-35265670

ABSTRACT

The C-C chemokine receptor type 5 (CCR5 or CD195) is one of the co-receptor binding sites of the human immunodeficiency virus (HIV). Transplantations of hematopoietic stem cells with the CCR5Δ32 knockout mutation could represent an effective tool for the complete cure of HIV; these methods having passed the stage of proof-of-principle. At the same time, using the modern CRISPR/Cas9 genome editing method, we can effectively reproduce the CCR5Δ32 mutation in any wild-type cells. Thus, the task of searching for and accurately quantifying the content of mutant CCR5Δ32 alleles in heterogeneous cell mixtures becomes relevant. In this study, we describe the generation of an artificial CCR5Δ32 mutation using CRISPR/Cas9 followed by multiplex droplet digital polymerase chain reaction (ddPCR) to quantify its content in cell mixtures. The system we have developed allows us to quickly and accurately measure the content of cells with the CCR5Δ32 mutation, down to 0.8%.

8.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34969862

ABSTRACT

Nuclear noncoding RNAs (ncRNAs) are key regulators of gene expression and chromatin organization. The progress in studying nuclear ncRNAs depends on the ability to identify the genome-wide spectrum of contacts of ncRNAs with chromatin. To address this question, a panel of RNA-DNA proximity ligation techniques has been developed. However, neither of these techniques examines proteins involved in RNA-chromatin interactions. Here, we introduce RedChIP, a technique combining RNA-DNA proximity ligation and chromatin immunoprecipitation for identifying RNA-chromatin interactions mediated by a particular protein. Using antibodies against architectural protein CTCF and the EZH2 subunit of the Polycomb repressive complex 2, we identify a spectrum of cis- and trans-acting ncRNAs enriched at Polycomb- and CTCF-binding sites in human cells, which may be involved in Polycomb-mediated gene repression and CTCF-dependent chromatin looping. By providing a protein-centric view of RNA-DNA interactions, RedChIP represents an important tool for studies of nuclear ncRNAs.


Subject(s)
CCCTC-Binding Factor/metabolism , Polycomb-Group Proteins/metabolism , RNA, Untranslated/metabolism , Chromatin Immunoprecipitation , DNA-Binding Proteins/metabolism , Humans
9.
Front Mol Biosci ; 9: 1091757, 2022.
Article in English | MEDLINE | ID: mdl-36589234

ABSTRACT

Diabetes has been a worldwide healthcare problem for many years. Current methods of treating diabetes are still largely directed at symptoms, aiming to control the manifestations of the pathology. This creates an overall need to find alternative measures that can impact on the causes of the disease, reverse diabetes, or make it more manageable. Understanding the role of key players in the pathogenesis of diabetes and the related ß-cell functions is of great importance in combating diabetes. PDX1 is a master regulator in pancreas organogenesis, the maturation and identity preservation of ß-cells, and of their role in normal insulin function. Mutations in the PDX1 gene are correlated with many pancreatic dysfunctions, including pancreatic agenesis (homozygous mutation) and MODY4 (heterozygous mutation), while in other types of diabetes, PDX1 expression is reduced. Therefore, alternative approaches to treat diabetes largely depend on knowledge of PDX1 regulation, its interaction with other transcription factors, and its role in obtaining ß-cells through differentiation and transdifferentiation protocols. In this article, we review the basic functions of PDX1 and its regulation by genetic and epigenetic factors. Lastly, we summarize different variations of the differentiation protocols used to obtain ß-cells from alternative cell sources, using PDX1 alone or in combination with various transcription factors and modified culture conditions. This review shows the unique position of PDX1 as a potential target in the genetic and cellular treatment of diabetes.

10.
Biomedicines ; 9(11)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34829971

ABSTRACT

Brain diseases including Down syndrome (DS/TS21) are known to be characterized by changes in cellular metabolism. To adequately assess such metabolic changes during pathological processes and to test drugs, methods are needed that allow monitoring of these changes in real time with minimally invasive effects. Thus, the aim of our work was to study the metabolic status and intracellular pH of spheroids carrying DS using fluorescence microscopy and FLIM. For metabolic analysis we measured the fluorescence intensities, fluorescence lifetimes and the contributions of the free and bound forms of NAD(P)H. For intracellular pH assay we measured the fluorescence intensities of SypHer-2 and BCECF. Data were processed with SPCImage and Fiji-ImageJ. We demonstrated the predominance of glycolysis in TS21 spheroids compared with normal karyotype (NK) spheroids. Assessment of the intracellular pH indicated a more alkaline intracellular pH in the TS21 spheroids compared to NK spheroids. Using fluorescence imaging, we performed a comprehensive comparative analysis of the metabolism and intracellular pH of TS21 spheroids and showed that fluorescence microscopy and FLIM make it possible to study living cells in 3D models in real time with minimally invasive effects.

11.
Cells ; 10(7)2021 07 04.
Article in English | MEDLINE | ID: mdl-34359860

ABSTRACT

A major problem in psychiatric research is a deficit of relevant cell material of neuronal origin, especially in large quantities from living individuals. One of the promising options is cells from the olfactory neuroepithelium, which contains neuronal progenitors that ensure the regeneration of olfactory receptors. These cells are easy to obtain with nasal biopsies and it is possible to grow and cultivate them in vitro. In this work, we used RNAseq expression profiling and immunofluorescence microscopy to characterise neurospheres-derived cells (NDC), that simply and reliably grow from neurospheres (NS) obtained from nasal biopsies. We utilized differential expression analysis to explore the molecular changes that occur during transition from NS to NDC. We found that processes associated with neuronal and vascular cells are downregulated in NDC. A comparison with public transcriptomes revealed a depletion of neuronal and glial components in NDC. We also discovered that NDC have several metabolic features specific to neuronal progenitors treated with the fungicide maneb. Thus, while NDC retain some neuronal/glial identity, additional protocol alterations are needed to use NDC for mass sample collection in psychiatric research.


Subject(s)
Olfactory Mucosa/cytology , Spheroids, Cellular/cytology , Adult , Biomarkers/metabolism , Female , Gene Expression Regulation , Gene Ontology , Glial Fibrillary Acidic Protein/metabolism , Humans , Male , Neuroglia/metabolism , Neurons/cytology , Neurons/metabolism , Principal Component Analysis , Spheroids, Cellular/metabolism , Transcriptome/genetics
12.
Int J Mol Sci ; 22(8)2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33916959

ABSTRACT

The recessive form of dystrophic epidermolysis bullosa (RDEB) is a crippling disease caused by impairments in the junctions of the dermis and the basement membrane of the epidermis. Using ectopic expression of hTERT/hTERT + BMI-1 in primary cells, we developed expansible cultures of RDEB fibroblasts and keratinocytes. We showed that they display the properties of their founders, including morphology, contraction ability and expression of the respective specific markers including reduced secretion of type VII collagen (C7). The immortalized keratinocytes retained normal stratification in 3D skin equivalents. The comparison of secreted protein patterns from immortalized RDEB and healthy keratinocytes revealed the differences in the contents of the extracellular matrix that were earlier observed specifically for RDEB. We demonstrated the possibility to reverse the genotype of immortalized cells to the state closer to the progenitors by the Cre-dependent hTERT switch off. Increased ß-galactosidase activity and reduced proliferation of fibroblasts were shown after splitting out of transgenes. We anticipate our cell lines to be tractable models for studying RDEB from the level of single-cell changes to the evaluation of 3D skin equivalents. Our approach permits the creation of standardized and expandable models of RDEB that can be compared with the models based on primary cell cultures.


Subject(s)
Fibroblasts/metabolism , Homologous Recombination , Integrases/metabolism , Keratinocytes/metabolism , Telomerase/genetics , Transgenes , Adolescent , Adult , Biomarkers , Cell Line, Transformed , Cell Proliferation , Cellular Senescence/genetics , Child , Epidermolysis Bullosa Dystrophica/etiology , Epidermolysis Bullosa Dystrophica/metabolism , Female , Fibroblasts/pathology , Fluorescent Antibody Technique , Gene Knockdown Techniques , Gene Order , Genetic Vectors/genetics , Humans , Immunohistochemistry , Male , Middle Aged , Mutation , Polycomb Repressive Complex 1/genetics , Polycomb Repressive Complex 1/metabolism , Primary Cell Culture , Proteomics/methods , Telomerase/metabolism , Young Adult
13.
Exp Cell Res ; 397(2): 112358, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33160998

ABSTRACT

The fundamental question about the functionality of in vitro derived human primordial germ cell-like cells remains unanswered, despite ongoing research in this area. Attempts have been made to imitate the differentiation of human primordial germ cells (hPGCs) and meiocytes in vitro from human pluripotent stem cells (hPSCs). A defined system for developing human haploid cells in vitro is the challenge that scientists face to advance the knowledge of human germ cell development. To develop human primordial germ cell-like cells (hPGCLCs) from human pluripotent stem cells (hPSCs) that are capable of giving rise to haploid cells, we applied a sequential induction protocol via the early mesodermal push of female human embryonic and induced pluripotent stem cells. BMP4-induced early mesoderm-like cells showed significant alterations in their expression profiles toward early (PRDM1 and NANOS3) and late (VASA and DAZL) germ cell markers. Furthermore, using retinoic acid (RA), we induced hPGCLCs in embryoid bodies and identified positive staining for the meiotic initiation marker STRA8. Efforts to find the cells exhibiting progression to meiosis were unsuccessful. The validation by the expression of SCP3 did not correspond to the natural pattern. Regarding the 20-day meiotic induction, the derived hPGCLCs containing two X-chromosomes were unable to complete the meiotic division. We observed the expression of the oocyte marker PIWIL1 and PIWIL4. RNAseq analysis and cluster dendrogram showed a similar clustering of hPGCLC groups and meiotic like cell groups as compared to previously published data. This reproducible in vitro model for deriving hPGCLCs provides opportunities for studying the molecular mechanisms involved in the specification of hPGCs. Moreover, our results will support a further elucidation of gametogenesis and meiosis of female hPGCs.


Subject(s)
Cell Differentiation , Embryoid Bodies/cytology , Gene Expression Regulation, Developmental , Germ Cells/cytology , Induced Pluripotent Stem Cells/cytology , Meiosis , Cells, Cultured , Embryoid Bodies/metabolism , Female , Gene Expression Profiling , Germ Cells/metabolism , Humans , In Vitro Techniques , Induced Pluripotent Stem Cells/metabolism , RNA-Seq
14.
PeerJ ; 8: e9746, 2020.
Article in English | MEDLINE | ID: mdl-33194345

ABSTRACT

The rapid development of technologies in regenerative medicine indicates clearly that their common application is not a matter of if, but of when. However, the regeneration of beta-cells for diabetes patients remains a complex challenge due to the plurality of related problems. Indeed, the generation of beta-cells masses expressing marker genes is only a first step, with maintaining permanent insulin secretion, their protection from the immune system and avoiding pathological modifications in the genome being the necessary next developments. The prospects of regenerative medicine in diabetes therapy were promoted by the emergence of promising results with embryonic stem cells (ESCs). Their pluripotency and proliferation in an undifferentiated state during culture have ensured the success of ESCs in regenerative medicine. The discovery of induced pluripotent stem cells (iPSCs) derived from the patients' own mesenchymal cells has provided further hope for diabetes treatment. Nonetheless, the use of stem cells has significant limitations related to the pluripotent stage, such as the risk of development of teratomas. Thus, the direct conversion of mature cells into beta-cells could address this issue. Recent studies have shown the possibility of such transdifferentiation and have set trends for regeneration medicine, directed at minimizing genome modifications and invasive procedures. In this review, we will discuss the published results of beta-cell regeneration and the advantages and disadvantages illustrated by these experiments.

15.
Front Cell Dev Biol ; 8: 815, 2020.
Article in English | MEDLINE | ID: mdl-33117792

ABSTRACT

Neural stem cells (NSCs) provide promising approaches for investigating embryonic neurogenesis, modeling of the pathogenesis of diseases of the central nervous system, and for designing drug-screening systems. Such cells also have an application in regenerative medicine. The most convenient and acceptable source of NSCs is pluripotent stem cells (embryonic stem cells or induced pluripotent stem cells). However, there are many different protocols for the induction and differentiation of NSCs, and these result in a wide range of neural cell types. This review is intended to summarize the knowledge accumulated, to date, by workers in this field. It should be particularly useful for researchers who are beginning investigations in this area of cell biology.

16.
Article in English | MEDLINE | ID: mdl-32850737

ABSTRACT

The speed of reprogramming technologies evolution is rising dramatically in modern science. Both the scientific community and health workers depend on such developments due to the lack of safe autogenic cells and tissues for regenerative medicine, genome editing tools and reliable screening techniques. To perform experiments efficiently and to propel the fundamental science it is important to keep up with novel modifications and techniques that are being discovered almost weekly. One of them is CRISPR/Cas9 based genome and transcriptome editing. The aim of this article is to summarize currently existing CRISPR/Cas9 applications for cell reprogramming, mainly, to compare them with other non-CRISPR approaches and to highlight future perspectives and opportunities.

17.
Vaccines (Basel) ; 8(2)2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32570805

ABSTRACT

Telomerase reverse transcriptase (TERT) is a classic tumor-associated antigen overexpressed in majority of tumors. Several TERT-based cancer vaccines are currently in clinical trials, but immune correlates of their antitumor activity remain largely unknown. Here, we characterized fine specificity and lytic potential of immune response against rat TERT in mice. BALB/c mice were primed with plasmids encoding expression-optimized hemagglutinin-tagged or nontagged TERT or empty vector and boosted with same DNA mixed with plasmid encoding firefly luciferase (Luc DNA). Injections were followed by electroporation. Photon emission from booster sites was assessed by in vivo bioluminescent imaging. Two weeks post boost, mice were sacrificed and assessed for IFN-γ, interleukin-2 (IL-2), and tumor necrosis factor alpha (TNF-α) production by T-cells upon their stimulation with TERT peptides and for anti-TERT antibodies. All TERT DNA-immunized mice developed cellular and antibody response against epitopes at the N-terminus and reverse transcriptase domain (rtTERT) of TERT. Photon emission from mice boosted with TERT/TERT-HA+Luc DNA was 100 times lower than from vector+Luc DNA-boosted controls. Bioluminescence loss correlated with percent of IFN-γ/IL-2/TNF-α producing CD8+ and CD4+ T-cells specific to rtTERT, indicating immune clearance of TERT/Luc-coexpressing cells. We made murine adenocarcinoma 4T1luc2 cells to express rtTERT by lentiviral transduction. Expression of rtTERT significantly reduced the capacity of 4T1luc2 to form tumors and metastasize in mice, while not affecting in vitro growth. Mice which rejected the tumors developed T-cell response against rtTERT and low/no response to the autoepitope of TERT. This advances rtTERT as key component of TERT-based therapeutic vaccines against cancer.

18.
Front Immunol ; 11: 1016, 2020.
Article in English | MEDLINE | ID: mdl-32582159

ABSTRACT

In peripheral tissues, immune protection critically depends on the activity of tissue resident macrophages, which makes our understanding of the biology of these cells of great significance. Until recently, human macrophage studies were largely based on the analysis of monocyte-derived macrophages that differ from tissue resident macrophages by many characteristics. To model tissue resident macrophages, methods of generating macrophages from pluripotent stem cells have been developed. However, the immunological properties of macrophages derived from pluripotent stem cells remain under-investigated. In this study, we aimed to perform the multifarious immunological characteristics of macrophages generated from human induced pluripotent stem cells (iMϕs), including an analysis of their phenotype, secretory and antibacterial activities, as well as their comparison with macrophages derived from blood monocytes and infected lung tissue. We report that iMϕs displayed the morphology and the CD11b+CD45+CD14+ phenotype typical for mononuclear phagocytes. The cells co-expressed markers known to be associated with classically (CD80, CD86, CCR5) and alternatively (CD163 and CD206) activated macrophages, with a bias toward a higher expression of the latter. iMϕs secreted pro-inflammatory (IL-6, CXCL8, CCL2, CCL4, CXCL1, CXCL10) and anti-inflammatory (IL-10, IL-1RA, CCL22) cytokines with a high IL-10/IL-12p70 index (>20). iMϕs were phagocytic and restricted Mycobacterium tuberculosis growth in vitro by >75%. iMϕs differed from blood monocytes/macrophages by a lower expression level of HLA-DR and the CD14+CD16int phenotype and shared several phenotypic characteristics with lung macrophages. In response to LPS, iMϕs up-regulated HLA-DR and produced TNF-α. IFN-γ increased iMϕ reactivity to LPS, but did not increase iMϕ mycobactericidal capacity. The results characterize iMϕs as differentiated but low-activated/low-polarized "naïve-like" macrophages that are capable of mounting inflammatory and antibacterial responses when exposed to inflammatory stimuli or pathogens. iMϕs represent a valuable model for studying antibacterial responses of tissue resident macrophages and for developing approaches to modulating macrophage activity.


Subject(s)
Induced Pluripotent Stem Cells/immunology , Inflammation/immunology , Lung/pathology , Macrophages/immunology , Mycobacterium tuberculosis/physiology , Tuberculosis/immunology , Antigens, CD/metabolism , Cell Culture Techniques , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Humans , Immunophenotyping , Macrophage Activation , Phagocytosis
19.
Sci Rep ; 10(1): 7110, 2020 04 28.
Article in English | MEDLINE | ID: mdl-32346061

ABSTRACT

The initiation of protein synthesis in bacteria is ruled by three canonical factors: IF1, IF2, and IF3. This system persists in human mitochondria; however, it functions in a rather different way due to specialization and adaptation to the organellar micro-environment. We focused on human mitochondrial IF3, which was earlier studied in vitro, but no knock-out cellular models have been published up to date. In this work, we generated human HeLa cell lines deficient in the MTIF3 gene and analyzed their mitochondrial function. Despite the lack of IF3mt in these cells, they preserved functional mitochondria capable of oxygen consumption and protein synthesis; however, the translation of ATP6 mRNA was selectively decreased which compromised the assembly of ATP synthase. Together with the analogous results obtained earlier for baker's yeast mitochondrial IF3, our findings point to a functional divergence of mitochondrial initiation factors from their bacterial ancestors.


Subject(s)
Eukaryotic Initiation Factors/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/biosynthesis , Protein Biosynthesis , Eukaryotic Initiation Factors/genetics , HeLa Cells , Humans , Mitochondria/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
20.
Plast Reconstr Surg Glob Open ; 8(2): e2610, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32309071

ABSTRACT

BACKGROUND: The regeneration of the peripheral nerves after injuries is still a challenging fundamental and clinical problem. The cell therapy and nerve guide conduit construction are promising modern approaches. Nowadays, different sources of cells for transplantation are available. But it is little known about the interaction between fetal central nervous system cells and peripheral nerve tissue. In this study, we analyzed the development of the fetal neocortex and spinal cord solid grafts injected into the gelatin hydrogel conduits and their effects on sciatic nerve regeneration after cut injury. METHODS: Frontal neocortex tissue was obtained from E19.5 and spinal cord tissue was obtained from E14.5 fetuses harvested from transgenic EGFP mice. The grafts were injected into the hydrogel conduits which were connected to the nerve stumps after cut injury. The recovery of motor function was estimated with walking track analysis at 2, 5, and 8 weeks after surgery. Then immunohistochemical study was performed. RESULTS: The histological examination showed that only fetal neocortex solid graft cells had survived after implantation. Immunostaining revealed that some of the transplanted cells expressed neural markers such as neurofilament protein and NeuN. But the cells mostly differentiated in glial lineage, which was confirmed with immunostaining for GFAP and S100ß. The walking-track analysis has shown that 8 weeks after surgery bioengineered conduit differed significantly from the control. CONCLUSIONS: We revealed that the hydrogel conduit is suitable for nerve re-growth and that the fetal neocortex grafted cells can survive and differentiate. Bioengineered conduit can stimulate functional recovery after the nerve injury.

SELECTION OF CITATIONS
SEARCH DETAIL
...