Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Neurosci ; 71(4): 804-809, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32915417

ABSTRACT

Stress is considered as an important risk factor in the progression and the onset of many disorders such as multiple sclerosis. However, metabolite changes as a result of demyelination under the detrimental effects of stress are not well understood. Thus, 36 female Wistar rats (i.e., groups (1) no-cuprizone (Cont), (2) no-stress + cuprizone-treated (Cup), (3) physical stress + cuprizone-treated (P-Cup), (4) psychological stress + cuprizone-treated (Psy-Cup), (5) physical stress + no-cuprizone-treated (P), (6) psychological stress + no-cuprizone-treated (Psy)) were used in this study. Following induction of repetitive stress, cuprizone treatment was carried out for 6 weeks to instigate demyelination in all groups except the control animal. Relative metabolite concentrations of the brain were investigated by single-voxel proton magnetic resonance spectroscopy (reporting N-acetyl-aspartate (NAA), glycerophosphocholine with phosphocholine (tCho) relative to total creatine (tCr)). According to 1H-MRS, rats in the Cup group indicated a reduction in NAA/ tCr (p < 0.001) as well as tCho/ tCr (p < 0.05) compared with that in the Cont group. In contrast, in both stress + cuprizone-treated groups, NAA/tCr and tCho/tCr ratios remarkably increased versus the Cup group (p < 0.001) and the Cont group (p < 0.001 for the Psy-Cup group and p < 0.05 for the P-Cup group). Both P and Psy groups revealed normal metabolite concentrations similar to the Cont group 6 weeks post stress. Seemingly, in the case of cuprizone alone, decreased level of metabolites is mainly relevant to neuronal cell impairments. Meanwhile, as a result of oxidative stress enhancement due to stress exposure, oligodendrocyte becomes the main victim indicating the increased level of metabolite ratios.


Subject(s)
Metabolome , Multiple Sclerosis/psychology , Stress, Psychological/metabolism , Animals , Aspartic Acid/metabolism , Creatine/metabolism , Cuprizone/toxicity , Female , Glycerylphosphorylcholine/metabolism , Multiple Sclerosis/complications , Multiple Sclerosis/etiology , Multiple Sclerosis/metabolism , Phosphorylcholine/metabolism , Proton Magnetic Resonance Spectroscopy , Rats , Rats, Wistar , Stress, Psychological/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...