Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 454
Filter
1.
Brain Sci ; 14(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38790480

ABSTRACT

BACKGROUND: Applying deep brain stimulation (DBS) to several brain regions has been investigated in attempts to treat highly treatment-resistant depression, with variable results. Our initial pilot data suggested that the bed nucleus of the stria terminalis (BNST) could be a promising therapeutic target. OBJECTIVE: The aim of this study was to gather blinded data exploring the efficacy of applying DBS to the BNST in patients with highly refractory depression. METHOD: Eight patients with chronic severe treatment-resistant depression underwent DBS to the BNST. A randomised, double-blind crossover study design with fixed stimulation parameters was followed and followed by a period of open-label stimulation. RESULTS: During the double-blind crossover phase, no consistent antidepressant effects were seen with any of the four stimulation parameters applied, and no patients achieved response or remission criteria during the blinded crossover phase or during a subsequent period of three months of blinded stimulation. Stimulation-related side effects, especially agitation, were reported by a number of patients and were reversible with adjustment of the stimulation parameters. CONCLUSIONS: The results of this study do not support the application of DBS to the BNST in patients with highly resistant depression or ongoing research utilising stimulation at this brain site. The blocked randomised study design utilising fixed stimulation parameters was poorly tolerated by the participants and does not appear suitable for assessing the efficacy of DBS at this location.

2.
J Psychiatry Neurosci ; 49(3): E172-E181, 2024.
Article in English | MEDLINE | ID: mdl-38729664

ABSTRACT

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment for major depressive disorder (MDD), but substantial heterogeneity in outcomes remains. We examined a potential mechanism of action of rTMS to normalize individual variability in resting-state functional connectivity (rs-fc) before and after a course of treatment. METHODS: Variability in rs-fc was examined in healthy controls (baseline) and individuals with MDD (baseline and after 4-6 weeks of rTMS). Seed-based connectivity was calculated to 4 regions associated with MDD: left dorsolateral prefrontal cortex (DLPFC), right subgenual anterior cingulate cortex (sgACC), bilateral insula, and bilateral precuneus. Individual variability was quantified for each region by calculating the mean correlational distance of connectivity maps relative to the healthy controls; a higher variability score indicated a more atypical/idiosyncratic connectivity pattern. RESULTS: We included data from 66 healthy controls and 252 individuals with MDD in our analyses. Patients with MDD did not show significant differences in baseline variability of rs-fc compared with controls. Treatment with rTMS increased rs-fc variability from the right sgACC and precuneus, but the increased variability was not associated with clinical outcomes. Interestingly, higher baseline variability of the right sgACC was significantly associated with less clinical improvement (p = 0.037, uncorrected; did not survive false discovery rate correction).Limitations: The linear model was constructed separately for each region of interest. CONCLUSION: This was, to our knowledge, the first study to examine individual variability of rs-fc related to rTMS in individuals with MDD. In contrast to our hypotheses, we found that rTMS increased the individual variability of rs-fc. Our results suggest that individual variability of the right sgACC and bilateral precuneus connectivity may be a potential mechanism of rTMS.


Subject(s)
Depressive Disorder, Major , Magnetic Resonance Imaging , Transcranial Magnetic Stimulation , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Transcranial Magnetic Stimulation/methods , Female , Male , Adult , Middle Aged , Neural Pathways/physiopathology , Neural Pathways/diagnostic imaging , Parietal Lobe/physiopathology , Parietal Lobe/diagnostic imaging , Rest , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Connectome , Treatment Outcome , Brain/physiopathology , Brain/diagnostic imaging
3.
Elife ; 122024 Mar 28.
Article in English | MEDLINE | ID: mdl-38547008

ABSTRACT

In recent years, there has been debate about the effectiveness of treatments from different fields, such as neurostimulation, neurofeedback, brain training, and pharmacotherapy. This debate has been fuelled by contradictory and nuanced experimental findings. Notably, the effectiveness of a given treatment is commonly evaluated by comparing the effect of the active treatment versus the placebo on human health and/or behaviour. However, this approach neglects the individual's subjective experience of the type of treatment she or he received in establishing treatment efficacy. Here, we show that individual differences in subjective treatment - the thought of receiving the active or placebo condition during an experiment - can explain variability in outcomes better than the actual treatment. We analysed four independent datasets (N = 387 participants), including clinical patients and healthy adults from different age groups who were exposed to different neurostimulation treatments (transcranial magnetic stimulation: Studies 1 and 2; transcranial direct current stimulation: Studies 3 and 4). Our findings show that the inclusion of subjective treatment can provide a better model fit either alone or in interaction with objective treatment (defined as the condition to which participants are assigned in the experiment). These results demonstrate the significant contribution of subjective experience in explaining the variability of clinical, cognitive, and behavioural outcomes. We advocate for existing and future studies in clinical and non-clinical research to start accounting for participants' subjective beliefs and their interplay with objective treatment when assessing the efficacy of treatments. This approach will be crucial in providing a more accurate estimation of the treatment effect and its source, allowing the development of effective and reproducible interventions.


Neuromodulation is a type of intervention that relies on various non-invasive techniques to temporarily stimulate the brain and nervous system. It can be used for the treatment of depression or other medical conditions, as well as the improvement of cognitive abilities such as attention. However, there is conflicting evidence regarding whether this approach has beneficial effects. Most studies aiming to assess the efficiency of a treatment rely on examining the outcomes of people who received the intervention in comparison to participants who undergo a similar procedure with no therapeutic effect (or placebo). However, the influence of other, 'subjective' factors on these results ­ such as the type of intervention participants think they have received ­ remains poorly investigated. To bridge this gap, Fassi and Hochman et al. used statistical modeling to assess how patients' beliefs about their treatment affected the results of four neuromodulation studies on mind wandering, depression and attention deficit hyperactivity disorder symptoms. In two studies, participants' perceptions of their treatment status were more strongly linked to changes in depression scores and mind-wandering than the actual treatment. Results were more nuanced in the other two studies. In one of them, participants who received the real neuromodulation but believed they received the placebo showed the most improvement in depressive symptoms; in the other study, subjective beliefs and objective treatment both explained changes in inattention symptoms. Taken together, the results by Fassi and Hochman et al. suggest that factoring in patients' subjective beliefs about their treatment may be necessary in studies of neuromodulation and other interventions like virtual reality or neurofeedback, where participants are immersed in cutting-edge research settings and might therefore be more susceptible to develop beliefs about treatment efficacy.


Subject(s)
Neurofeedback , Transcranial Direct Current Stimulation , Adult , Female , Humans , Neurofeedback/methods , Transcranial Magnetic Stimulation , Treatment Outcome , Male
4.
Psychiatry Res ; 334: 115822, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452496

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is an effective treatment in patients with depression, yet treatment response remains variable. While previous work has identified predictors of remission in younger adults, relatively little data exists in late-life depression (LLD). To address this gap, data from 164 participants with LLD from a randomized non-inferiority treatment trial comparing standard bilateral rTMS to bilateral theta burst stimulation (TBS) (ClinicalTrials.gov identifier: NCT02998580) were analyzed using binary logistic regression and conditional inference tree (CIT) modeling. Lower baseline depression symptom severity, fewer prior antidepressant treatment failures, and higher global cognition predicted remission following rTMS treatment. The CIT predicted a higher likelihood of achieving remission for patients with a total score of 19 or lower on the Montgomery-Åsberg Depression Rating Scale, 1 or fewer prior antidepressant treatment failures, and a total score of 23 or higher on the Montreal Cognitive Assessment. Our results indicate that older adults with lower severity of depression, fewer antidepressant treatment failures, and higher global cognition benefit more from current forms of rTMS. The results suggest that there is potentially higher value in using rTMS earlier in the treatment pathway for depression in older adults.


Subject(s)
Depressive Disorder, Major , Transcranial Magnetic Stimulation , Aged , Humans , Antidepressive Agents/therapeutic use , Depression/therapy , Depressive Disorder, Major/psychology , Prefrontal Cortex/physiology , Transcranial Magnetic Stimulation/methods , Treatment Outcome , Randomized Controlled Trials as Topic , Equivalence Trials as Topic
5.
Transl Psychiatry ; 14(1): 153, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503740

ABSTRACT

Whether individuals with mild cognitive impairment (MCI) and a history of major depressive disorder (MDD) are at a higher risk for cognitive decline than those with MCI alone is still not clear. Previous work suggests that a reduction in prefrontal cortical theta phase-gamma amplitude coupling (TGC) is an early marker of cognitive impairment. This study aimed to determine whether using a TGC cutoff is better at separating individuals with MCI or MCI with remitted MDD (MCI+rMDD) on cognitive performance than their clinical diagnosis. Our hypothesis was that global cognition would differ more between TGC-based groups than diagnostic groups. We analyzed data from 128 MCI (mean age: 71.8, SD: 7.3) and 85 MCI+rMDD (mean age: 70.9, SD: 4.7) participants. Participants completed a comprehensive neuropsychological battery; TGC was measured during the N-back task. An optimal TGC cutoff was determined during the performance of the 2-back. This TGC cutoff was used to classify participants into low vs. high-TGC groups. We then compared Cohen's d of the difference in global cognition between the high and low TGC groups to Cohen's d between the MCI and MCI+rMDD groups. We used bootstrapping to determine 95% confidence intervals for Cohen's d values using the whole sample. As hypothesized, Cohen's d for the difference in global cognition between the TGC groups was larger (0.64 [0.32, 0.88]) than between the diagnostic groups (0.10 [0.004, 0.37]) with a difference between these two Cohen's d's of 0.54 [0.10, 0.80]. Our findings suggest that TGC is a useful marker to identify individuals at high risk for cognitive decline, beyond clinical diagnosis. This could be due to TGC being a sensitive marker of prefrontal cortical dysfunction that would lead to an accelerated cognitive decline.


Subject(s)
Cognitive Dysfunction , Depressive Disorder, Major , Humans , Aged , Depressive Disorder, Major/diagnosis , Cognition , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/psychology , Neuropsychological Tests
6.
Biol Psychiatry ; 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38280408

ABSTRACT

BACKGROUND: Recent studies have reported significant advances in modeling the biological basis of heterogeneity in major depressive disorder, but investigators have also identified important technical challenges, including scanner-related artifacts, a propensity for multivariate models to overfit, and a need for larger samples with more extensive clinical phenotyping. The goals of the current study were to evaluate dimensional and categorical solutions to parsing heterogeneity in depression that are stable and generalizable in a large, single-site sample. METHODS: We used regularized canonical correlation analysis to identify data-driven brain-behavior dimensions that explain individual differences in depression symptom domains in a large, single-site dataset comprising clinical assessments and resting-state functional magnetic resonance imaging data for 328 patients with major depressive disorder and 461 healthy control participants. We examined the stability of clinical loadings and model performance in held-out data. Finally, hierarchical clustering on these dimensions was used to identify categorical depression subtypes. RESULTS: The optimal regularized canonical correlation analysis model yielded 3 robust and generalizable brain-behavior dimensions that explained individual differences in depressed mood and anxiety, anhedonia, and insomnia. Hierarchical clustering identified 4 depression subtypes, each with distinct clinical symptom profiles, abnormal resting-state functional connectivity patterns, and antidepressant responsiveness to repetitive transcranial magnetic stimulation. CONCLUSIONS: Our results define dimensional and categorical solutions to parsing neurobiological heterogeneity in major depressive disorder that are stable, generalizable, and capable of predicting treatment outcomes, each with distinct advantages in different contexts. They also provide additional evidence that regularized canonical correlation analysis and hierarchical clustering are effective tools for investigating associations between functional connectivity and clinical symptoms.

7.
Transl Psychiatry ; 13(1): 390, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38097566

ABSTRACT

Over the past two decades noninvasive brain stimulation (NIBS) techniques have emerged as powerful therapeutic options for a range of psychiatric and neurological disorders. NIBS are hypothesized to rebalance pathological brain networks thus reducing symptoms and improving functioning. This development has been fueled by controlled studies with increasing size and rigor aiming to characterize how treatments induce clinically effective change. Clinical trials of NIBS for specific indications have resulted in federal approval for unipolar depression, bipolar depression, smoking cessation, and obsessive-compulsive disorder in the United States, and several other indications worldwide. As a rapidly emerging field, there are numerous pre-clinical indications currently in development using a variety of electrical and magnetic, non-convulsive, and convulsive approaches. This review discusses the state-of-the-science surrounding promising avenues of NIBS currently in pre-approval stages for non-affective psychiatric disorders. We consider emerging therapies for psychosis, anxiety disorders, obsessive-compulsive disorder, and borderline personality disorder, utilizing transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and magnetic seizure therapy (MST), with an additional brief section for early-stage techniques including transcranial focused ultrasound stimulation (tFUS) and transcranial alternating current stimulation (tACS). As revealed in this review, there is considerable promise across all four psychiatric indications with different NIBS approaches. Positive findings are notable for the treatment of psychosis using tDCS, MST, and rTMS. While rTMS is already FDA approved for the treatment of obsessive-compulsive disorder, methodologies such as tDCS also demonstrate potential in this condition. Emerging techniques show promise for treating non-affective disorders likely leading to future regulatory approvals.


Subject(s)
Depressive Disorder , Obsessive-Compulsive Disorder , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods , Brain/physiology , Depressive Disorder/therapy , Obsessive-Compulsive Disorder/therapy
8.
Transl Psychiatry ; 13(1): 347, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37968260

ABSTRACT

Major depressive disorder (MDD) is a leading cause of disability worldwide. One of the most efficacious treatments for treatment-resistant MDD is electroconvulsive therapy (ECT). Recently, magnetic seizure therapy (MST) was developed as an alternative to ECT due to its more favorable side effect profile. While these approaches have been very successful clinically, the neural mechanisms underlying their therapeutic effects are unknown. For example, clinical "slowing" of the electroencephalogram beginning in the postictal state and extending days to weeks post-treatment has been observed in both treatment modalities. However, a recent longitudinal study of a small cohort of ECT patients revealed that, rather than delta oscillations, clinical slowing was better explained by increases in aperiodic activity, an emerging EEG signal linked to neural inhibition. Here we investigate the role of aperiodic activity in a cohort of patients who received ECT and a cohort of patients who received MST treatment. We find that aperiodic neural activity increases significantly in patients receiving either ECT or MST. Although not directly related to clinical efficacy in this dataset, increased aperiodic activity is linked to greater amounts of neural inhibition, which is suggestive of a potential shared neural mechanism of action across ECT and MST.


Subject(s)
Depressive Disorder, Major , Depressive Disorder, Treatment-Resistant , Electroconvulsive Therapy , Humans , Depressive Disorder, Major/complications , Seizures/therapy , Transcranial Magnetic Stimulation/adverse effects , Depressive Disorder, Treatment-Resistant/therapy
9.
Sci Rep ; 13(1): 19115, 2023 11 04.
Article in English | MEDLINE | ID: mdl-37925557

ABSTRACT

Theta burst stimulation (TBS), a specific form of repetitive transcranial magnetic stimulation (TMS), is a promising treatment for youth with Major Depressive Disorder (MDD) who do not respond to conventional therapies. However, given the variable response to TBS, a greater understanding of how baseline features relate to clinical response is needed to identify which patients are most likely to benefit from this treatment. In the current study, we sought to determine if baseline neurophysiology, specifically cortical excitation and/or inhibition, is associated with antidepressant response to TBS. In two independent open-label clinical trials, youth (aged 16-24 years old) with MDD underwent bilateral dorsolateral prefrontal cortex (DLPFC) TBS treatment. Clinical trial one and two consisted of 10 and 20 daily sessions of bilateral DLPFC TBS, respectively. At baseline, single-pulse TMS combined with electroencephalography was used to assess the neurophysiology of 4 cortical sites: bilateral DLPFC and inferior parietal lobule. Measures of cortical excitation and inhibition were indexed by TMS-evoked potentials (i.e., P30, N45, P60, N100, and P200). Depression severity was measured before, during and after treatment completion using the Hamilton Rating Scale for Depression-17. In both clinical trials, the baseline left DLPFC N45 and P60, which are believed to reflect inhibitory and excitatory mechanisms respectively, were predictors of clinical response. Specifically, greater (i.e., more negative) N45 and smaller P60 baseline values were associated with greater treatment response to TBS. Accordingly, cortical excitation and inhibition circuitry of the left DLPFC may have value as a TBS treatment response biomarker for youth with MDD.Clinical trial 1 registration number: NCT02472470 (June 15, 2015).Clinical trial 2 registration number: NCT03708172 (October 17, 2018).


Subject(s)
Depressive Disorder, Major , Transcranial Magnetic Stimulation , Humans , Adolescent , Young Adult , Adult , Depression , Depressive Disorder, Major/therapy , Prefrontal Cortex/physiology , Evoked Potentials/physiology
10.
Brain Stimul ; 16(5): 1501-1509, 2023.
Article in English | MEDLINE | ID: mdl-37806524

ABSTRACT

BACKGROUND: Current smoking cessation treatments are limited in terms of efficacy, particularly with regards to long term abstinence. There is a large amount of evidence implicating the insula in nicotine addiction. OBJECTIVE: To examine the efficacy of bilateral repetitive transcranial magnetic stimulation (rTMS) directed to the insular cortex with the H11 coil, relative to sham stimulation, on smoking abstinence and smoking outcomes in smokers who are receiving standard varenicline treatment. METHODS: This randomized, double-blind, sham controlled trial recruited 42 participants who were randomized to receive either active (n = 24) or sham (n = 18) high frequency rTMS directed to the insula (4 weeks), while receiving varenicline treatment (12 weeks). The primary outcome was 7-day point prevalence abstinence at the end of 12 weeks. RESULTS: Smokers in the active group had significantly higher abstinence rates than those in the sham group (82.4% vs. 30.7%, p = 0.013) at the end of treatment (Week 12). Secondary outcome measures of abstinence rate at the end of rTMS treatment (Week 4), abstinence rate at 6 months, and smoking outcomes (e.g., craving, withdrawal) showed no significant differences between groups. No differences were found in adverse events reported between the groups. CONCLUSION: This study provides evidence of the potential benefit of having a combined treatment for smoking cessation using insula rTMS with the H11 coil and varenicline. Maintenance rTMS sessions and continuation of varenicline for those in abstinence may induce longer-term effects and should be considered in future studies.


Subject(s)
Smoking Cessation , Tobacco Use Disorder , Humans , Varenicline/therapeutic use , Transcranial Magnetic Stimulation , Insular Cortex , Tobacco Use Disorder/therapy , Double-Blind Method , Treatment Outcome
11.
Schizophr Res ; 261: 245-255, 2023 11.
Article in English | MEDLINE | ID: mdl-37844414

ABSTRACT

Transcranial magnetic stimulation (TMS) can offer therapeutic benefits and provide value in neurophysiological research. One of the newer TMS paradigms is theta burst stimulation (TBS) which can be delivered in two patterns: continuous (cTBS - inducing LTD-like effects) and intermittent (iTBS - inducing LTP-like effects). This review paper aims to explore studies that have utilized TBS protocols over different areas of the cortex to study the neurophysiological functions and treatment of patients with schizophrenia. PubMed was searched using the following keywords "schizophrenia", "schizoaffective", or "psychosis", and "theta burst stimulation". Out of the 90 articles which were found, thirty met review inclusion criteria. The inclusion criteria included studying the reported effect (clinical, physiological, or both) of at least one session of TBS on human subjects, and abstracts (at minimum) must have been in English. The main target areas included prefrontal cortex (12 studies - 10 dorsolateral prefrontal cortex (DLPFC), 2 dorsomedial prefrontal cortex (DMPFC)) vermal cerebellum (5), and temporo-parietal cortex (8). Other target areas included inferior parietal lobe (2), and motor cortex (3). TBS neurophysiological effect was explored in 5 studies using functional magnetic resonance image (fMRI), magnetic resonance spectroscopy (MRS), electroencephalography (EEG), electromyography (EMG) and positron emission topography (PET) scan. Overall, TBS can offer great therapeutic potential as it is well-tolerated, feasible, and has few, if any, adverse effects. TBS may be targeted to treat specific symptomatology, as an augmenting intervention to pharmacotherapy, or even improving patient's insight into their diagnosis.


Subject(s)
Schizophrenia , Transcranial Magnetic Stimulation , Humans , Transcranial Magnetic Stimulation/methods , Schizophrenia/therapy , Electroencephalography/methods , Prefrontal Cortex , Parietal Lobe , Theta Rhythm/physiology
12.
BMC Psychiatry ; 23(1): 739, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37817124

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) is a prevalent mental health condition affecting millions worldwide, leading to disability and reduced quality of life. MDD poses a global health priority due to its early onset and association with other disabling conditions. Available treatments for MDD exhibit varying effectiveness, and a substantial portion of individuals remain resistant to treatment. Repetitive transcranial magnetic stimulation (rTMS), applied to the left and/or right dorsolateral prefrontal cortex (DLPFC), is an alternative treatment strategy for those experiencing treatment-resistant MDD. The objective of this study is to investigate whether this newer form of rTMS, namely theta burst stimulation (TBS), when performed unilaterally or bilaterally, is efficacious in treatment-resistant MDD. METHODS: In this naturalistic, randomized double-blinded non-inferiority trial, participants with a major depressive episode will be randomized to receive either unilateral (i.e., continuous TBS [cTBS] to the right and sham TBS to the left DLPFC) or bilateral sequential TBS (i.e., cTBS to the right and intermittent TBS [iTBS] to the left DLPFC) delivered 5 days a week for 4-6 weeks. Responders will move onto a 6-month flexible maintenance phase where TBS treatment will be delivered at a decreasing frequency depending on degree of symptom mitigation. Several clinical assessments and neuroimaging and neurophysiological biomarkers will be collected to investigate treatment response and potential associated biomarkers. A non-inferiority analysis will investigate whether bilateral sequential TBS is non-inferior to unilateral TBS and regression analyses will investigate biomarkers of treatment response. We expect to recruit a maximal of 256 participants. This trial is approved by the Research Ethics Board of The Royal's Institute of Mental Health Research (REB# 2,019,071) and will follow the Declaration of Helsinki. Findings will be published in peer-reviewed journals. DISCUSSION: Comprehensive assessment of symptoms and neurophysiological biomarkers will contribute to understanding the differential efficacy of the tested treatment protocols, identifying biomarkers for treatment response, and shedding light into underlying mechanisms of TBS. Our findings will inform future clinical trials and aid in personalizing treatment selection and scheduling for individuals with MDD. TRIAL REGISTRATION: The trial is registered on https://clinicaltrials.gov/ct2/home (#NCT04142996).


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/therapy , Depressive Disorder, Major/psychology , Transcranial Magnetic Stimulation/methods , Depression/therapy , Quality of Life , Prefrontal Cortex/physiology , Biomarkers , Randomized Controlled Trials as Topic
13.
bioRxiv ; 2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37645792

ABSTRACT

Hundreds of neuroimaging studies spanning two decades have revealed differences in brain structure and functional connectivity in depression, but with modest effect sizes, complicating efforts to derive mechanistic pathophysiologic insights or develop biomarkers. 1 Furthermore, although depression is a fundamentally episodic condition, few neuroimaging studies have taken a longitudinal approach, which is critical for understanding cause and effect and delineating mechanisms that drive mood state transitions over time. The emerging field of precision functional mapping using densely-sampled longitudinal neuroimaging data has revealed unexpected, functionally meaningful individual differences in brain network topology in healthy individuals, 2-5 but these approaches have never been applied to individuals with depression. Here, using precision functional mapping techniques and 11 datasets comprising n=187 repeatedly sampled individuals and >21,000 minutes of fMRI data, we show that the frontostriatal salience network is expanded two-fold in most individuals with depression. This effect was replicable in multiple samples, including large-scale, group-average data (N=1,231 subjects), and caused primarily by network border shifts affecting specific functional systems, with three distinct modes of encroachment occurring in different individuals. Salience network expansion was unexpectedly stable over time, unaffected by changes in mood state, and detectable in children before the subsequent onset of depressive symptoms in adolescence. Longitudinal analyses of individuals scanned up to 62 times over 1.5 years identified connectivity changes in specific frontostriatal circuits that tracked fluctuations in specific symptom domains and predicted future anhedonia symptoms before they emerged. Together, these findings identify a stable trait-like brain network topology that may confer risk for depression and mood-state dependent connectivity changes in frontostriatal circuits that predict the emergence and remission of depressive symptoms over time.

14.
Am J Lifestyle Med ; 17(4): 589-600, 2023.
Article in English | MEDLINE | ID: mdl-37426738

ABSTRACT

Introduction: Physical activity has been shown to have a multitude of mental health benefits. However, there is limited evidence on the specific mental health benefits of boxing. We conducted a scoping review of academic and grey literature to map research of boxing exercises as an intervention in mental health and to identify gaps in knowledge. Methods: The authors utilized the PRISMA-ScR methodological approach and guidelines from the Joanna Briggs Institute and a structured search was completed from inception until August 08, 2022. Results: We identified 16 documents that used non-contact boxing as an exercise intervention that improved various mental health difficulties. Non-contact boxing exercises, usually in a high-intensity-interval training group setting, provided significant reduction in symptoms of anxiety, depression, PTSD and negative symptoms of schizophrenia. Non-contact boxing provided a cathartic release of anger and stress, with evidence of improved mood, self-esteem, confidence, concentration, metabolic burden, strength and coordination. Conclusions: Preliminary evidence indicates that non-contact boxing exercises are a promising intervention to improve mental health burden. Further well designed randomized controlled trials using group, non-contact boxing exercises as an intervention for common mental disorders are warranted to confirm its benefits for mental health.

15.
J Affect Disord ; 339: 691-697, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37467796

ABSTRACT

INTRODUCTION: Guidance on Major Depressive Disorder (MDD) treatment in those with comorbid Alcohol Use Disorder (AUD) is limited. We performed a secondary analysis on the Sequenced Treatment Alternatives to Relieve Depression (STAR*D) study, examining the association between comorbid AUD and depression outcomes. METHODS: STAR*D was a real-world effectiveness trial starting with citalopram in level 1. Non-responding participants progressed through 3 other sequential treatment levels with different switch or augmentation options. Antidepressant outcomes were compared between MDD (n = 2826) and comorbid MDD and AUD (n = 864). Logistic regressions were performed to evaluate remission and response predictors in the total STAR*D sample and the AUD-comorbidity interaction. RESULTS: Chi-squared tests showed no significant difference in response or remission rates from depression between groups across treatment levels. Higher Hamilton Rating Scale for Depression (HRSD) score was associated with overall lower odds of remission in treatment level 1 (OR = 0.93, p < 0.001) and 2 (OR = 0.95, p < 0.001), with no significant interaction with comorbid AUD. Higher baseline suicidality had overall lower odds of remission in level 1 (OR = 0.82, p < 0.001) and 2 (OR = 0.1, p < 0.001), but with comorbid AUD compared to no AUD, suicidality increased odds of level 1 remission (OR = 1.30, p = 0.012). In comorbid AUD in level 2, venlafaxine was associated with lower odds of remission (OR = 0.13, p = 0.013) and response (OR = 0.12, p = 0.006); bupropion with lower odds of response (OR = 0.22, p = 0.024). LIMITATIONS: Open label study design and lack of alcohol use data. CONCLUSIONS: Comorbid AUD may interact with predictors of antidepressant response in MDD and using venlafaxine or bupropion may be less effective. Addressing this comorbidity requires unique assessment and treatment approaches.


Subject(s)
Alcoholism , Depressive Disorder, Major , Humans , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/epidemiology , Venlafaxine Hydrochloride/therapeutic use , Alcoholism/epidemiology , Bupropion/therapeutic use , Antidepressive Agents/therapeutic use , Treatment Outcome , Comorbidity
17.
Transl Psychiatry ; 13(1): 234, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37391420

ABSTRACT

Late-life depression (LLD) is a heterogenous mood disorder influenced by genetic factors. Cortical physiological processes such as cortical inhibition, facilitation, and plasticity may be markers of illness that are more strongly associated with genetic factors than the clinical phenotype. Thus, exploring the relationship between genetic factors and these physiological processes may help to characterize the biological mechanisms underlying LLD and improve diagnosis and treatment selection. Transcranial magnetic stimulation (TMS) combined with electromyography was used to measure short interval intracortical inhibition (SICI), cortical silent period (CSP), intracortical facilitation (ICF), and paired associative stimulation (PAS) in 79 participants with LLD. We used exploratory genome-wide association and gene-based analyses to assess for genetic correlations of these TMS measures. MARK4 (which encodes microtubule affinity-regulating kinase 4) and PPP1R37 (which encodes protein phosphatase 1 regulatory subunit 37) showed genome-wide significant association with SICI. EGFLAM (which encodes EGF-like fibronectin type III and laminin G domain) showed genome-wide significant association with CSP. No genes met genome-wide significant association with ICF or PAS. We observed genetic influences on cortical inhibition in older adults with LLD. Replication with larger sample sizes, exploration of clinical phenotype subgroups, and functional analysis of relevant genotypes is warranted to better characterize genetic influences on cortical physiology in LLD. This work is needed to determine whether cortical inhibition may serve as a biomarker to improve diagnostic precision and guide treatment selection in LLD.


Subject(s)
Depression , Genome-Wide Association Study , Genotype , Electromyography , Inhibition, Psychological
18.
Br J Psychiatry ; 223(5): 504-506, 2023 11.
Article in English | MEDLINE | ID: mdl-37334540

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is used for treatment of late-life depression. In the FOUR-D study, sequential bilateral theta-burst stimulation (TBS) had comparable remission rates to standard bilateral rTMS. Data were analysed from the FOUR-D trial to compare remission rates between two types of rTMS based on the number and class of prior medication trials. The remission rate was higher in participants with ≤1 previous trial (43.9%) than in participants with 2 previous trials (26.5%) or ≥3 previous trials (24.6%; χ² = 6.36, d.f. = 2, P = 0.04). Utilising rTMS earlier in late-life depression may lead to better outcomes.


Subject(s)
Depression , Depressive Disorder, Treatment-Resistant , Humans , Clinical Trials as Topic , Depression/therapy , Depressive Disorder, Treatment-Resistant/drug therapy , Transcranial Magnetic Stimulation , Treatment Outcome , Aged
19.
Psychol Med ; 53(6): 2427-2436, 2023 04.
Article in English | MEDLINE | ID: mdl-37310309

ABSTRACT

BACKGROUND: Repetitive transcranial magnetic stimulation has been employed to treat drug dependence, reduce drug use and improve cognition. The aim of the study was to analyze the effectiveness of intermittent theta-burst stimulation (iTBS) on cognition in individuals with methamphetamine use disorder (MUD). METHODS: This was a secondary analysis of 40 MUD subjects receiving left dorsolateral prefrontal cortex (L-DLPFC) iTBS or sham iTBS for 20 times over 10 days (twice-daily). Changes in working memory (WM) accuracy, reaction time, and sensitivity index were analyzed before and after active and sham rTMS treatment. Resting-state EEG was also acquired to identify potential biological changes that may relate to any cognitive improvement. RESULTS: The results showed that iTBS increased WM accuracy and discrimination ability, and improved reaction time relative to sham iTBS. iTBS also reduced resting-state delta power over the left prefrontal region. This reduction in resting-state delta power correlated with the changes in WM. CONCLUSIONS: Prefrontal iTBS may enhance WM performance in MUD subjects. iTBS induced resting EEG changes raising the possibility that such findings may represent a biological target of iTBS treatment response.


Subject(s)
Dorsolateral Prefrontal Cortex , Methamphetamine , Humans , Transcranial Magnetic Stimulation , Memory, Short-Term , Prefrontal Cortex
20.
BMC Psychiatry ; 23(1): 327, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37165333

ABSTRACT

BACKGROUND: Electroconvulsive therapy (ECT) is a procedural treatment that is potentially life-saving for some patients with severe psychiatric illness. At the start of the global coronavirus disease 2019 (COVID-19) pandemic, ECT practice was remarkably disrupted, putting vulnerable individuals at increased risk of symptom exacerbation and death by suicide. This study aimed to capture the self-reported experiences of psychiatrists based at healthcare facilities across Canadian provinces who were delivering ECT treatments during the first phase of the COVID-19 pandemic (i.e., from mid-March 2020 to mid-May 2020). METHODS: A multidisciplinary team of experts developed a survey focusing on five domains: ECT unit operations, decision-making, hospital resources, ECT procedure, and mitigating patient impact. Responses were collected from psychiatrists providing ECT at 67 ECT centres in Canada, grouped by four geographical regions (Ontario, Quebec, Atlantic Canada, and Western Canada). RESULTS: Clinical operations of ECT programs were disrupted across all four regions - however, centres in Atlantic Canada were able to best preserve outpatient and maintenance care, while centres in Western Canada were able to best preserve inpatient and acute care. Similarly, Atlantic and Western Canada demonstrated the best decision-making practices of involving the ECT team and clinical ethicists in the development of pandemic-related guidelines. Across all four regions, ECT practice was affected by the redeployment of professionals, the shortage of personal protective equipment, and the need to enforce social distancing. Attempts to introduce modifications to the ECT delivery room and minimize bag-valve-mask ventilation were consistently reported. All four regions developed a new patient prioritization framework, and Western Canada, notably, aimed to provide ECT to only the most severe cases. CONCLUSIONS: The results suggest that ECT provision was disproportionately affected across different parts of Canada. Possible factors that could explain these interregional differences include population, distribution of urban vs. rural areas, pre-pandemic barriers in access to ECT, number of cases, ability to control the spread of infection, and the general reduction in physicians' activities across different areas of health care. Studying these factors in the future will inform how medical centres should respond to public health emergencies and pandemic-related circumstances in the context of procedural treatments.


Subject(s)
COVID-19 , Electroconvulsive Therapy , Mental Disorders , Humans , COVID-19/epidemiology , Pandemics/prevention & control , Electroconvulsive Therapy/methods , Mental Disorders/therapy , Ontario
SELECTION OF CITATIONS
SEARCH DETAIL
...