Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37513061

ABSTRACT

As the primary greenhouse gas, CO2 emission has noticeably increased over the past decades resulting in global warming and climate change. Surprisingly, anthropogenic activities have increased atmospheric CO2 by 50% in less than 200 years, causing more frequent and severe rainfall, snowstorms, flash floods, droughts, heat waves, and rising sea levels in recent times. Hence, reducing the excess CO2 in the atmosphere is imperative to keep the global average temperature rise below 2 °C. Among many CO2 mitigation approaches, CO2 capture using porous materials is considered one of the most promising technologies. Porous solid materials such as carbons, silica, zeolites, hollow fibers, and alumina have been widely investigated in CO2 capture technologies. Interestingly, porous silica-based materials have recently emerged as excellent candidates for CO2 capture technologies due to their unique properties, including high surface area, pore volume, easy surface functionalization, excellent thermal, and mechanical stability, and low cost. Therefore, this review comprehensively covers major CO2 capture processes and their pros and cons, selecting a suitable sorbent, use of liquid amines, and highlights the recent progress of various porous silica materials, including amine-functionalized silica, their reaction mechanisms and synthesis processes. Moreover, CO2 adsorption capacities, gas selectivity, reusability, current challenges, and future directions of porous silica materials have also been discussed.

2.
Environ Res ; 215(Pt 1): 114242, 2022 12.
Article in English | MEDLINE | ID: mdl-36067842

ABSTRACT

Over the past few years, synthetic dye-contaminated wastewater has attracted considerable global attention due to the low biodegradability and the ability of organic dyes to persist and remain toxic, causing numerous health and environmental concerns. As a result of the recalcitrant nature of those complex organic dyes, the remediation of wastewater using conventional wastewater treatment techniques is becoming increasingly challenging. In recent years, advanced oxidation processes (AOPs) have emerged as a potential alternative to treat organic dyestuffs discharged from industries. The most widely employed AOPs include photocatalysis, ozonation, Fenton oxidation, electrochemical oxidation, catalytic heterogeneous oxidation, and ultrasound irradiation. These processes involve the generation of highly reactive radicals to oxidize organic dyes into innocuous minerals. However, many conventional AOPs suffer from several setbacks, including the high cost, high consumption of reagents and substrates, self-agglomeration of catalysts, limited reusability, and the requirement of light, ultrasound, or electricity. Therefore, there has been significant interest in improving the performance of conventional AOPs using biopolymers and heterogeneous catalysts such as metal oxide nanoparticles (MONPs). Biopolymers have been widely considered in developing green, sustainable, eco-friendly, and low-cost AOP-based dye removal technologies. They inherit intriguing properties like biodegradability, renewability, nontoxicity, relative abundance, and sorption. In addition, the immobilization of catalysts on biopolymer supports has been proven to possess excellent catalytic activity and turnover numbers. The current review provides comprehensive coverage of different AOPs and how efficiently biopolymers, including cellulose, chitin, chitosan, alginate, gelatin, guar gum, keratin, silk fibroin, zein, albumin, lignin, and starch, have been integrated with heterogeneous AOPs in dye removal applications. This review also discusses the general degradation mechanisms of AOPs, applications of biopolymers in AOPs and the roles of biopolymers in AOPs-based dye removal processes. Furthermore, key challenges and future perspectives of biopolymer-based AOPs have also been highlighted.


Subject(s)
Chitosan , Fibroins , Ozone , Water Pollutants, Chemical , Water Purification , Zein , Albumins , Alginates , Coloring Agents , Gelatin , Keratins , Lignin , Oxidation-Reduction , Oxides , Starch , Wastewater , Water Pollutants, Chemical/chemistry
3.
ACS Omega ; 7(23): 19579-19590, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35722021

ABSTRACT

Starch and its derivatives have recently emerged as a sustainable and renewable alternative for petroleum-based expanded polystyrene (EPS) and expanded polypropylene (EPP) foam materials. In this study, biodegradable foam materials were prepared from cassava starch using a novel dual modification technique, combining microwave treatment and freeze-drying. The foam materials were prepared from starch solutions microwaved over different intervals. The starch-based foam materials were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), 13C nuclear magnetic resonance (13C-NMR) spectroscopy, and compression set test. Moreover, the water absorption capacities and density values of the foam materials were measured according to ASTM standards. The biodegradability test was carried out according to the aerobic compost environment test. The lowest water absorption capacities of 65.56% and 70.83% were exhibited for the cassava starch foam sample (MWB) prepared at a 20 s microwave treatment time and immersed in distilled water for 2 and 24 h, respectively. Furthermore, the lightweight cassava starch-based foam materials displayed density ranging from 124 to 245 kg/m3. The biodegradation test exhibited significant biodegradation of over 50% after 15 days for all the foam materials prepared. These results suggest that the dual-modified cassava starch-based biodegradable foams show potential in sustainable packaging applications by replacing petroleum-based materials.

4.
Molecules ; 26(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34833972

ABSTRACT

Starch is one of the most common biodegradable polymers found in nature, and it is widely utilized in the food and beverage, bioplastic industry, paper industry, textile, and biofuel industries. Starch has received significant attention due to its environmental benignity, easy fabrication, relative abundance, non-toxicity, and biodegradability. However, native starch cannot be directly used due to its poor thermo-mechanical properties and higher water absorptivity. Therefore, native starch needs to be modified before its use. Major starch modification techniques include genetic, enzymatic, physical, and chemical. Among those, chemical modification techniques are widely employed in industries. This review presents comprehensive coverage of chemical starch modification techniques and genetic, enzymatic, and physical methods developed over the past few years. In addition, the current applications of chemically modified starch in the fields of packaging, adhesives, pharmaceuticals, agriculture, superabsorbent and wastewater treatment have also been discussed.


Subject(s)
Plants/chemistry , Starch/chemistry , Biocatalysis , Biotechnology , Cross-Linking Reagents/chemistry , Esterification , Genetic Engineering , Hydrolysis , Plants/genetics , Starch/genetics
5.
Molecules ; 26(15)2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34361855

ABSTRACT

Synthetic dyes have become an integral part of many industries such as textiles, tannin and even food and pharmaceuticals. Industrial dye effluents from various dye utilizing industries are considered harmful to the environment and human health due to their intense color, toxicity and carcinogenic nature. To mitigate environmental and public health related issues, different techniques of dye remediation have been widely investigated. However, efficient and cost-effective methods of dye removal have not been fully established yet. This paper highlights and presents a review of recent literature on the utilization of the most widely available biopolymers, specifically, cellulose, chitin and chitosan-based products for dye removal. The focus has been limited to the three most widely explored technologies: adsorption, advanced oxidation processes and membrane filtration. Due to their high efficiency in dye removal coupled with environmental benignity, scalability, low cost and non-toxicity, biopolymer-based dye removal technologies have the potential to become sustainable alternatives for the remediation of industrial dye effluents as well as contaminated water bodies.


Subject(s)
Chitosan/chemistry , Coloring Agents/chemistry , Textile Industry , Waste Disposal, Fluid , Water Pollutants, Chemical , Humans
6.
Materials (Basel) ; 11(11)2018 Nov 16.
Article in English | MEDLINE | ID: mdl-30453510

ABSTRACT

Two series of alumina (Al2O3)⁻mesoporous organosilica (Al⁻MO) hybrid materials were synthesized using the co-condensation method in the presence of Pluronic 123 triblock copolymer. The first series of Al⁻MO samples was prepared using aluminum nitrate nanahydrate (Al⁻NN) and aluminum isopropoxide (Al⁻IP) as alumina precursors, and organosilanes with three different bridging groups, namely tris[3-(trimethoxysilyl)propyl]isocyanurate, 1,4-bis(triethoxysilyl)benzene, and bis(triethoxysilyl)ethane. The second series was obtained using the aforementioned precursors in the presence of an amine-containing 3-aminopropyltriethoxysilane to introduce, also, hanging groups. The Al⁻IP-derived mesostructures in the first series showed the well-developed porosity and high specific surface area, as compared to the corresponding mesostructures prepared in the second series with 3-aminopropyltriethoxysilane. The materials obtained from Al⁻NN alumina precursor possessed enlarged mesopores in the range of 3⁻17 nm, whereas the materials synthesized from Al⁻IP alumina precursor displayed relatively low pore widths in the range of 5⁻7 nm. The Al⁻IP-derived materials showed high CO2 uptakes, due to the enhanced surface area and microporosity in comparison to those observed for the samples of the second series with AP hanging groups. The Al⁻NN- and Al⁻IP-derived samples exhibited the CO2 uptakes in the range of 0.73⁻1.72 and 1.66⁻2.64 mmol/g at 1 atm pressure whereas, at the same pressure, the Al⁻NN and Al⁻IP-derived samples with 3-aminopropyl hanging groups showed the CO2 uptakes in the range of 0.72⁻1.51 and 1.70⁻2.33 mmol/g, respectively. These data illustrate that Al⁻MO hybrid materials are potential adsorbents for large-scale CO2 capture at 25 °C.

7.
MethodsX ; 4: 118-127, 2017.
Article in English | MEDLINE | ID: mdl-28280690

ABSTRACT

In Fourier transform infrared (FTIR) microspectrocopy, the tissue preparation method is crucial, especially how the tissue is cryo-sectioned prior to the imaging requires special consideration. Having a temperature difference between the cutting blade and the specimen holder of the cryostat greatly affects the quality of the sections. Therefore, we have developed an optimal protocol for cryo-sectioning of biological tissues by varying the temperature of both the cutting blade and the specimen holder. Using this protocol, we successfully cryo-sectioned four different difficult-to-section tissues including white adipose tissue (WAT), brown adipose tissue (BAT), lung, and liver. The optimal temperatures that required to be maintained at the cutting blade and the specimen holder for the cryo-sectioning of WAT, BAT, lung, and liver are (-25, -20 °C), (-25, -20 °C), (-17, -13 °C) and (-15, -5 °C), respectively. The optimized protocol developed in this study produced high quality cryo-sections with sample thickness of 8-10 µm, as well as high quality trans-reflectance mode FTIR microspectroscopic images for the tissue sections. •Use of cryostat technique to make thin sections of biological samples for FTIR microspectroscopy imaging.•Optimized cryostat temperature conditions by varying the temperatures at the cutting blade and specimen holder to obtain high quality sections of difficult-to-handle tissues.•FTIR imaging is used to obtain chemical information from cryo-sectioned samples with no interference of the conventional paraffin-embedding agent and chemicals.

8.
Angew Chem Int Ed Engl ; 55(42): 13229-13232, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27633899

ABSTRACT

Directly obtaining kinetic and mechanistic data for the reactions of nitroxyl (HNO) with biomolecules (k≈103 -107 m-1 s-1 ) is not feasible for many systems because of slow HNO release from HNO donor molecules (t1/2 is typically minutes to hours). To address this limitation, we have developed a photoactivatable HNO donor incorporating the (3-hydroxy-2-naphthalenyl)methyl phototrigger, which rapidly releases HNO on demand. A "proof of concept" study is reported, which demonstrates that, upon continuous xenon light excitation, rapid decomposition of the HNO donor occurs within seconds. The amount of HNO generated is strongly dependent on solvent and the rate of the reaction is dependent on the light intensity.

9.
Int J Biol Macromol ; 93(Pt A): 350-358, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27586639

ABSTRACT

Manganese dioxide (MnO2)-chitin-hybrid material was prepared by a facile "one-pot" synthesis method. MnO2-chitin hybrid was used for the effective removal of methylene blue (MB) from liquid solution as model for wastewater treatment. The hybrid obtained was characterized by field emission scanning electron microscopy and energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction and thermogravimetric analysis. The effect of pH and temperature were studied. MnO2-chitin hybrid showed high performance for oxidative decolorization and removal of MB. Typically, 25mL of MB (20mg/L) can be completely decolorized in 2.5min with 8.5mg of the MnO2-chitin hybrid. The hybrid material exhibited excellent recyclability and durability with the degradation value of 99% for MB after ten consecutive cycles.


Subject(s)
Chitin/chemistry , Chitin/chemical synthesis , Manganese Compounds/chemistry , Methylene Blue/chemistry , Methylene Blue/isolation & purification , Oxides/chemistry , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Chemistry Techniques, Synthetic , Color , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Temperature , Water Purification
10.
J Inorg Biochem ; 163: 81-87, 2016 10.
Article in English | MEDLINE | ID: mdl-27567143

ABSTRACT

Kinetic and mechanistic studies on the reaction of a major intracellular vitamin B12 form, cob(II)alamin (Cbl(II)), with hypochlorous acid/hypochlorite (HOCl/OCl-) have been carried out. Cbl(II) (Co(II)) is rapidly oxidized by HOCl to predominately aquacobalamin/hydroxycobalamin (Cbl(III), Co(III)) with a second-order rate constant of 2.4×107M-1s-1 (25.0°C). The stoichiometry of the reaction is 1:1. UHPLC/HRMS analysis of the product mixture of the reaction of Cbl(II) with 0.9mol equiv. HOCl provides support for HOCl being initially reduced to Cl and subsequent H atom abstraction from the corrin macrocycle occurring, resulting in small amounts of corrinoid species with two or four H atoms fewer than the parent cobalamin. Upon the addition of excess (H)OCl further slower reactions are observed. Finally, SDS-PAGE experiments show that HOCl-induced damage to bovine serum albumin does not occur in the presence of Cbl(II), providing support for Cbl(II) being an efficient HOCl trapping agent.


Subject(s)
Electrons , Hypochlorous Acid/chemistry , Vitamin B 12/chemistry , Animals , Cattle , Kinetics , Oxidation-Reduction , Serum Albumin, Bovine/chemistry
11.
J Neurosci ; 35(45): 15170-86, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26558787

ABSTRACT

Mitochondrial changes, including decreased expression of electron transport chain subunit genes and impaired energetic, have been reported in multiple sclerosis (MS), but the mechanisms involved in these changes are not clear. To determine whether epigenetic mechanisms are involved, we measured the concentrations of methionine metabolites by liquid chromatography tandem mass spectrometry, histone H3 methylation patterns, and markers of mitochondrial respiration in gray matter from postmortem MS and control cortical samples. We found decreases in respiratory markers as well as decreased concentrations of the methionine metabolites S-adenosylmethionine, betaine, and cystathionine in MS gray matter. We also found expression of the enzyme betaine homocysteine methyltransferase in cortical neurons. This enzyme catalyzes the remethylation of homocysteine to methionine, with betaine as the methyl donor, and has previously been thought to be restricted to liver and kidney in the adult human. Decreases in the concentration of the methyl donor betaine were correlated with decreases in histone H3 trimethylation (H3K4me3) in NeuN+ neuronal nuclei in MS cortex compared with controls. Mechanistic studies demonstrated that H3K4me3 levels and mitochondrial respiration were reduced in SH-SY5Y cells after exposure to the nitric oxide donor sodium nitroprusside, and betaine was able to rescue H3K4me3 levels and respiratory capacity in these cells. Chromatin immunoprecipitation experiments showed that betaine regulates metabolic genes in human SH-SY5Y neuroblastoma cells. These data suggest that changes to methionine metabolism may be mechanistically linked to changes in neuronal energetics in MS cortex. SIGNIFICANCE STATEMENT: For decades, it has been observed that vitamin B12 deficiency and multiple sclerosis (MS) share certain pathological changes, including conduction disturbances. In the present study, we have found that vitamin B12-dependent methionine metabolism is dysregulated in the MS brain. We found that concentrations of the methyl donor betaine are decreased in MS cortex and are correlated with reduced levels of the histone H3 methyl mark H3K4me3 in neurons. Cell culture and chromatin immunoprecipitation-seq data suggest that these changes may lead to defects in mitochondria and impact neuronal energetics. These data have uncovered a novel pathway linking methionine metabolism with mitochondrial respiration and have important implications for understanding mechanisms involved in neurodegeneration in MS.


Subject(s)
Brain/metabolism , Histones/metabolism , Methionine/metabolism , Mitochondria/metabolism , Multiple Sclerosis/metabolism , Adult , Brain/pathology , Cell Line, Tumor , Female , Humans , Male , Methylation , Mitochondria/pathology , Multiple Sclerosis/pathology
12.
Chemistry ; 21(17): 6409-19, 2015 Apr 20.
Article in English | MEDLINE | ID: mdl-25760981

ABSTRACT

The reactions of the carbonate radical anion (CO3 (.) (-) ) with vitamin B12 derivatives were studied by pulse radiolysis. The carbonate radical anion directly oxidizes the metal center of cob(II)alamin quantitively to give hydroxycobalamin, with a bimolecular rate constant of 2.0×10(9) M(-1) s(-1) . The reaction of CO3 (.) (-) with hydroxycobalamin proceeds in two steps. The second-order rate constant for the first reaction is 4.3×10(8) M(-1) s(-1) . The rate of the second reaction is independent of the hydroxycobalamin concentration and is approximately 3.0×10(3) s(-1) . Evidence for formation of corrinoid complexes differing from cobalamin by the abstraction of two or four hydrogen atoms from the corrin macrocycle and lactone ring formation has been obtained by ultra-high-performance liquid chromatography/high-resolution mass spectrometry (UHPLC/HRMS). A mechanism is proposed in which abstraction of a hydrogen atom by CO3 (.) (-) from a carbon atom not involved in the π conjugation system of the corrin occurs in the first step, resulting in formation of a Co(III) C-centered radical that undergoes rapid intramolecular electron transfer to form the corresponding Co(II) carbocation complex for about 50 % of these complexes. Subsequent competing pathways lead to formation of corrinoid complexes with two fewer hydrogen atoms and lactone derivatives of B12 . Our results demonstrate the potential of UHPLC combined with HRMS in the separation and identification of tetrapyrrole macrocycles with minor modifications from their parent molecule.


Subject(s)
Vitamin B 12/analogs & derivatives , Vitamin B 12/chemistry , Carbonates/chemistry , Chromatography, Liquid , Macrocyclic Compounds/chemistry , Mass Spectrometry , Molecular Structure , Pulse Radiolysis
13.
J Inorg Biochem ; 142: 54-8, 2015 01.
Article in English | MEDLINE | ID: mdl-25450018

ABSTRACT

Although now recognized to be an important reactive nitrogen species in biological systems that modifies the structures of proteins, DNA and lipids, there are few studies on the reactivity of NO2, including the reactions between NO2 and transition metal complexes. We report kinetic studies on the reactions of NO2 with two forms of vitamin B12 - cob(II)alamin and nitrocobalamin. UV-visible spectroscopy and HPLC analysis of the product solution show that NO2 cleanly oxidizes the metal center of cob(II)alamin to form nitrocobalamin, with a second-order rate constant of (3.5±0.3)×10(8)M(-1)s(-1) (pH7.0 and 9.0, room temperature, I=0.20M). The stoichiometry of the reaction is 1:1. No reaction is detected by UV-visible spectroscopy and HPLC analysis of the product solution when nitrocobalamin is exposed to up to 2.0molequiv. NO2.


Subject(s)
Nitrogen Dioxide/chemistry , Vitamin B 12/analogs & derivatives , Pulse Radiolysis , Vitamin B 12/chemistry
14.
Chembiochem ; 14(9): 1081-3, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23671003

ABSTRACT

O2.- scavenger: The rate constant for the rapid reaction of the ROS superoxide with the reduced vitamin B12 radical complex cob(II)alamin was directly determined to be 3.8×10(8) M⁻¹ s⁻¹. This rate was independent of pH over the range 5.5-8.7. These results have implications for studying the use of B12 supplements to combat diseases associated with oxidative stress.


Subject(s)
Superoxides/chemistry , Vitamin B 12/analogs & derivatives , Hydrogen-Ion Concentration , Kinetics , Oxidation-Reduction , Vitamin B 12/chemistry
15.
Eur J Inorg Chem ; 2013(17)2013 Jun 01.
Article in English | MEDLINE | ID: mdl-24415907

ABSTRACT

The essential but also toxic gaseous signaling molecule nitric oxide is scavenged by the reduced vitamin B12 complex cob(II)alamin. The resulting complex, nitroxylcobalamin (NO--Cbl(III)), is rapidly oxidized to nitrocobalamin (NO2Cbl) in the presence of oxygen; however it is unlikely that nitrocobalamin is itself stable in biological systems. Kinetic studies on the reaction between NO2Cbl and the important intracellular antioxidant, glutathione (GSH), are reported. In this study, a reaction pathway is proposed in which the ß-axial ligand of NO2Cbl is first substituted by water to give aquacobalamin (H2OCbl+), which then reacts further with GSH to form glutathionylcobalamin (GSCbl). Independent measurements of the four associated rate constants k1, k-1, k2, and k-2 support the proposed mechanism. These findings provide insight into the fundamental mechanism of ligand substitution reactions of cob(III)alamins with inorganic ligands at the ß-axial site.

SELECTION OF CITATIONS
SEARCH DETAIL
...