Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Phys Lipids ; 183: 191-203, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25062895

ABSTRACT

The present paper deals with the crystallization behavior of glyceryl behenate mixtures that are extensively used in the field of drug delivery. The aim of the study was to understand the structural and thermal behaviors of Compritol(®) by considering first the individual polymorphism of the main components constituting this excipient and then their mixtures. This excipient mainly contains dibehenin (∼50%), tribehenin (∼30%) and monobehenin (20%). It appeared clearly that the mixture polymorphism did not result from a simple addition of the individual behavior. Indeed, the solid state organization of this excipient strongly depended on the presence of the third main component, monobehenin, into the mixture. Furthermore, a threshold ratio of monobehenin, at least 10%, must be reach in order to obtain the typical structural organization (co-existence of α/sub-α subcells) and thermal behavior (solid-solid transition and melting) of Compritol(®). This underlines that special attention is required when mixing Compritol(®) with other pharmaceutical ingredients that could trap monoglycerides and modify the equilibrium present in the pure excipient.


Subject(s)
Crystallization/methods , Excipients/chemistry , Fatty Acids/chemistry , Monoglycerides/chemistry , Phase Transition , Thermal Conductivity
2.
J Control Release ; 158(3): 393-402, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-22138071

ABSTRACT

This study deals with the development of an oral controlled-release dosage form of a highly water-soluble antiepileptic drug. In this respect, drug-loaded spheroid particles close to 380 µm in diameter and composed of lipid binders were prepared by prilling. The purpose here was to thoroughly characterize the controlled-release mechanism of the drug in aqueous pH-6.8 buffered dissolution medium. Water and drug diffusion pathways as well as related kinetic parameters were determined by theoretical analysis of experimental data. Conventional in-vitro experiments performed by analytical high performance liquid chromatography showed that the released fraction reaches 90 wt.% only after a 24-hour immersion in the dissolution medium, pointing out an effective sustained release mechanism. Interpretation of these data was strengthened by the implementation of an innovative methodology involving X-ray diffraction and microtomography to follow the structural evolution of the drug-loaded microspheres at molecular and microscopic scales. This approach allowed to explicit that water and drug transports obey to Fickian diffusion behaviours in good agreement with Crank's and non-simplified Higuchi's equations, respectively. In the latter case, independent modelling of drug release assimilating the microspheres to a variable-geometry reservoir was considered to refine the kinetic analysis of the diffusion process. The water diffusion coefficient D(w) was found equal to 6.3 × 10(-9) cm(2)/s and the API apparent diffusion coefficient reduced to the tortuosity of the matrix D(API)/τ equal to 2 × 10(-9) cm(2)/s. This study ranks among the rare examples of monolithic dispersion device constituted by a highly soluble drug incorporated inside a perfectly inert lipid matrix. The dissolution liquid penetrates the particles through channels progressively created by the solubilization of the drug itself which occurs instantaneously at the inner front of the liquid.


Subject(s)
Delayed-Action Preparations/chemistry , Drug Compounding/methods , Microspheres , Anticonvulsants/chemistry , Diffusion , Excipients/chemistry , Fatty Acids/chemistry , Hydrophobic and Hydrophilic Interactions , Paraffin/chemistry , Valproic Acid/chemistry , Water/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...