Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Genet ; 94(2): 209-22, 2014 Feb 06.
Article in English | MEDLINE | ID: mdl-24462369

ABSTRACT

Leigh syndrome (LS) is a severe neurodegenerative disorder with characteristic bilateral lesions, typically in the brainstem and basal ganglia. It usually presents in infancy and is genetically heterogeneous, but most individuals with mitochondrial complex IV (or cytochrome c oxidase) deficiency have mutations in the biogenesis factor SURF1. We studied eight complex IV-deficient LS individuals from six families of Lebanese origin. They differed from individuals with SURF1 mutations in having seizures as a prominent feature. Complementation analysis suggested they had mutation(s) in the same gene but targeted massively parallel sequencing (MPS) of 1,034 genes encoding known mitochondrial proteins failed to identify a likely candidate. Linkage and haplotype analyses mapped the location of the gene to chromosome 19 and targeted MPS of the linkage region identified a homozygous c.3G>C (p.Met1?) mutation in C19orf79. Abolishing the initiation codon could potentially still allow initiation at a downstream methionine residue but we showed that this would not result in a functional protein. We confirmed that mutation of this gene was causative by lentiviral-mediated phenotypic correction. C19orf79 was recently renamed PET100 and predicted to encode a complex IV biogenesis factor. We showed that it is located in the mitochondrial inner membrane and forms a ∼300 kDa subcomplex with complex IV subunits. Previous proteomic analyses of mitochondria had overlooked PET100 because its small size was below the cutoff for annotating bona fide proteins. The mutation was estimated to have arisen at least 520 years ago, explaining how the families could have different religions and different geographic origins within Lebanon.


Subject(s)
Cytochrome-c Oxidase Deficiency/ethnology , Cytochrome-c Oxidase Deficiency/genetics , Founder Effect , Leigh Disease/ethnology , Leigh Disease/genetics , Mitochondrial Proteins/genetics , Chromosomes, Human, Pair 19/genetics , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Cytochrome-c Oxidase Deficiency/complications , DNA, Mitochondrial/genetics , DNA, Mitochondrial/isolation & purification , Female , Genetic Complementation Test , Genetic Linkage , Genome-Wide Association Study , Haplotypes , Homozygote , Humans , Infant , Lebanon , Leigh Disease/complications , Male , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Pedigree , Polymorphism, Single Nucleotide , Proteomics , Sequence Analysis, DNA
2.
Biomicrofluidics ; 3(3): 34102, 2009 Aug 03.
Article in English | MEDLINE | ID: mdl-20216958

ABSTRACT

Surface acoustic waves (SAWs) have been used as a rapid and efficient technique for driving microparticles into a three-dimensional scaffold matrix, raising the possibility that SAW may be effective in seeding live cells into scaffolds, that is, if the cells were able to survive the infusion process. Primary osteoblast-like cells were used to specifically address this issue: To investigate the effects of SAW on the cells' viability, proliferation, and differentiation. Fluorescence-labeled osteoblast-like cells were seeded into polycaprolactone scaffolds using the SAW method with a static method as a control. The cell distribution in the scaffold was assessed through image analysis. The cells were far more uniformly driven into the scaffold with the SAW method compared to the control, and the seeding process with SAW was also significantly faster: Cells were delivered into the scaffold in seconds compared to the hour-long process of static seeding. Over 80% of the osteoblast-like cells were found to be viable after being treated with SAW at 20 MHz for 10-30 s with an applied power of 380 mW over a wide range of cell suspension volumes (10-100 mul) and cell densities (1000-8000 cellsmul). After determining the optimal cell seeding parameters, we further found that the treated cells offered the same functionality as untreated cells. Taken together, these results show that the SAW method has significant potential as a practical scaffold cell seeding method for tissue and orthopedic engineering.

3.
Eur J Immunol ; 37(5): 1302-12, 2007 May.
Article in English | MEDLINE | ID: mdl-17407196

ABSTRACT

The transmembrane form of T1/ST2 (ST2) is a specific marker on murine Th2 cells that have been generated in vitro, or isolated from sites of allergic type 2 inflammation. Despite the association of ST2 with Th2 cells, to date no obligate role for ST2 in type 2 responses in vivo has been described. We have specifically addressed the role of ST2 on T cells by generation of ST2(-/-) mice crossed with ovalbumin (OVA) T cell receptor-transgenic mice. OVA-specific ST2(-/-) cells had normal cytokine responses to T cell activation after in vitro Th2 differentiation, but OVA stimulation of IL-5 was increased. Transfer of OVA-specific ST2(-/-) Th2 cells into BALB/c mice caused exacerbated pulmonary inflammation with occluded airways, elevated airway hyper-responsiveness and increased susceptibility to methacholine challenge that was associated with mortalities of recipient mice. The increased pulmonary inflammation in OVA-specific ST2(-/-) Th2 cell recipients was associated with selective differences in pulmonary levels of Th2 cytokines compared with OVA-specific ST2(+) Th2 cell recipients. Recipients of OVA-specific ST2(-/-) Th2 cells had a significant increase in eosinophils and a significant reduction in F4/80(hi) macrophages in the lungs. This is the first demonstration of a role for ST2 expression on Th2 cells down-regulating pulmonary inflammation. These data have major implications for the targeting of ST2 as a therapy for allergic airway disorders.


Subject(s)
Membrane Proteins/biosynthesis , Pneumonia/immunology , Respiratory Hypersensitivity/immunology , Th2 Cells/immunology , Animals , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Eosinophils/immunology , Flow Cytometry , Interleukin-1 Receptor-Like 1 Protein , Lymphocyte Activation/immunology , Macrophages/immunology , Mice , Mice, Transgenic , Ovalbumin/immunology , Receptors, Interleukin , Reverse Transcriptase Polymerase Chain Reaction
4.
J Exp Med ; 203(4): 1105-16, 2006 Apr 17.
Article in English | MEDLINE | ID: mdl-16606668

ABSTRACT

Type 2 immunity, which involves coordinated regulation of innate and adaptive immune responses, can protect against helminth parasite infection, but may lead to allergy and asthma after inappropriate activation. We demonstrate that il25(-/-) mice display inefficient Nippostrongylus brasiliensis expulsion and delayed cytokine production by T helper 2 cells. We further establish a key role for interleukin (IL)-25 in regulating a novel population of IL-4-, IL-5-, IL-13-producing non-B/non-T (NBNT), c-kit+, FcepsilonR1- cells during helminth infection. A deficit in this population in il25(-/-) mice correlates with inefficient N. brasiliensis expulsion. In contrast, administration of recombinant IL-25 in vivo induces the appearance of NBNT, c-kit+, FcepsilonR1- cells and leads to rapid worm expulsion that is T and B cell independent, but type 2 cytokine dependent. We demonstrate that these IL-25-regulated cells appear rapidly in the draining lymph nodes, implicating them as a source of type 2 cytokines during initiation of worm expulsion.


Subject(s)
B-Lymphocytes/cytology , Basophils/metabolism , Interleukins/physiology , Nippostrongylus/immunology , Strongylida Infections/immunology , Strongylida Infections/parasitology , T-Lymphocytes/cytology , Animals , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cells, Cultured , Cytokines/biosynthesis , Cytokines/classification , Interleukin-13/biosynthesis , Interleukin-13/deficiency , Interleukin-13/genetics , Interleukin-4/biosynthesis , Interleukin-4/deficiency , Interleukin-4/genetics , Interleukin-5/biosynthesis , Interleukin-5/deficiency , Interleukin-5/genetics , Interleukins/administration & dosage , Interleukins/deficiency , Interleukins/genetics , Mice , Mice, Inbred BALB C , Mice, Knockout , Proto-Oncogene Proteins c-kit/metabolism , Receptors, IgE/deficiency , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
5.
J Immunol ; 173(1): 113-22, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15210765

ABSTRACT

Interleukin-9 is an immunoregulatory cytokine implicated in the development of asthma and allergy. To investigate the role of IL-9 in vivo, we have generated transgenic mice in which IL-9 is expressed from its own promoter. Strikingly, overexpression of IL-9 resulted in premature mortality associated with a complex phenotype characterized by the development of autoantibodies, hydronephrosis, and T cell lymphoma. By intercrossing IL-9 transgenic mice with a panel of Th2 cytokine-deficient mice, we demonstrate that these disorders represent distinct phenotypes that can be dissociated by their differential dependence on Th2 cytokines. Autoantibody production was ablated in IL-9 transgenic animals with a combined absence of IL-4, IL-5, and IL-13, coincident with a reduction in peritoneal B-1 cells. Hydronephrosis arose in 75% of IL-9 transgenic animals and was dependent on the presence of IL-4 and IL-13. In contrast, T cell lymphomas developed independently of the other Th2 cytokines, with the generation of rapidly proliferating CD8(+) or CD4(+)CD8(+) T cell clones that arose in the thymus before infiltrating both lymphoid and nonlymphoid tissues. Our data highlight potentially important new roles for IL-9, through its regulation of downstream Th2 effector cytokines, in autoantibody production and in hydronephrosis.


Subject(s)
Autoantibodies/biosynthesis , Cytokines/physiology , Hydronephrosis/etiology , Interleukin-9/physiology , Lymphoma, T-Cell/etiology , Th2 Cells/immunology , Animals , Antigen-Antibody Complex/metabolism , Interleukin-13/physiology , Interleukin-4/physiology , Interleukin-5/physiology , Interleukin-9/genetics , Kidney Glomerulus/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic
6.
Am J Hum Genet ; 71(4): 863-76, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12215968

ABSTRACT

GRACILE (growth retardation, aminoaciduria, cholestasis, iron overload, lactacidosis, and early death) syndrome is a recessively inherited lethal disease characterized by fetal growth retardation, lactic acidosis, aminoaciduria, cholestasis, and abnormalities in iron metabolism. We previously localized the causative gene to a 1.5-cM region on chromosome 2q33-37. In the present study, we report the molecular defect causing this metabolic disorder, by identifying a homozygous missense mutation that results in an S78G amino acid change in the BCS1L gene in Finnish patients with GRACILE syndrome, as well as five different mutations in three British infants. BCS1L, a mitochondrial inner-membrane protein, is a chaperone necessary for the assembly of mitochondrial respiratory chain complex III. Pulse-chase experiments performed in COS-1 cells indicated that the S78G amino acid change results in instability of the polypeptide, and yeast complementation studies revealed a functional defect in the mutated BCS1L protein. Four different mutations in the BCS1L gene have been reported elsewhere, in Turkish patients with a distinctly different phenotype. Interestingly, the British and Turkish patients had complex III deficiency, whereas in the Finnish patients with GRACILE syndrome complex III activity was within the normal range, implying that BCS1L has another cellular function that is uncharacterized but essential and is putatively involved in iron metabolism.


Subject(s)
Iron Overload/genetics , Metabolic Diseases/genetics , Proteins/genetics , ATPases Associated with Diverse Cellular Activities , Animals , Blotting, Northern , COS Cells , Electron Transport Complex III/metabolism , Female , Genetic Complementation Test , Humans , Infant , Infant, Newborn , Iron Overload/enzymology , Male , Metabolic Diseases/enzymology , Molecular Sequence Data , Point Mutation , Proteins/metabolism , Saccharomyces cerevisiae/genetics , Sequence Analysis, DNA , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...