Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Infect Dis ; 29(4): 761-770, 2023 04.
Article in English | MEDLINE | ID: mdl-36918377

ABSTRACT

SARS-CoV-2 infections among vaccinated nursing home residents increased after the Omicron variant emerged. Data on booster dose effectiveness in this population are limited. During July 2021-March 2022, nursing home outbreaks in 11 US jurisdictions involving >3 infections within 14 days among residents who had received at least the primary COVID-19 vaccine(s) were monitored. Among 2,188 nursing homes, 1,247 outbreaks were reported in the periods of Delta (n = 356, 29%), mixed Delta/Omicron (n = 354, 28%), and Omicron (n = 536, 43%) predominance. During the Omicron-predominant period, the risk for infection within 14 days of an outbreak start was lower among boosted residents than among residents who had received the primary vaccine series alone (risk ratio [RR] 0.25, 95% CI 0.19-0.33). Once infected, boosted residents were at lower risk for all-cause hospitalization (RR 0.48, 95% CI 0.40-0.49) and death (RR 0.45, 95% CI 0.34-0.59) than primary vaccine-only residents.


Subject(s)
COVID-19 , United States/epidemiology , Humans , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Nursing Homes , Disease Outbreaks
2.
Infect Control Hosp Epidemiol ; 44(6): 1005-1009, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36645205

ABSTRACT

Among nursing home outbreaks of coronavirus disease 2019 (COVID-19) with ≥3 breakthrough infections when the predominant severe acute respiratory coronavirus virus 2 (SARS-CoV-2) variant circulating was the SARS-CoV-2 δ (delta) variant, fully vaccinated residents were 28% less likely to be infected than were unvaccinated residents. Once infected, they had approximately half the risk for all-cause hospitalization and all-cause death compared with unvaccinated infected residents.


Subject(s)
COVID-19 , Virus Diseases , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/epidemiology , COVID-19/prevention & control , Nursing Homes , Disease Outbreaks/prevention & control
3.
Environ Sci Technol ; 35(1): 240-6, 2001 Jan 01.
Article in English | MEDLINE | ID: mdl-11352020

ABSTRACT

An alternative approach to maintaining indoor air quality may be the biofiltration of air circulated within the space. A biofilter with living botanical matter as the packing medium reduced concentrations of toluene, ethylbenzene, and o-xylene concurrently present at parts per billion (volume) in indoor air. The greatest reduction in concentrations per pass was under the slowest influent air flux (0.025 m s(-1)); however, the maximum amount removed per unit time occurred under the most rapid flux (0.2 m s(-1)). There was little difference between the different compounds with removal capacities of between 1.3 and 2.4 micromol m(-3) biofilter s(-1) (between 0.5 and 0.9 g m(-3) biofilter h(-1)) depending on influent flux and temperature. Contrary to biofilters subjected to higher influent concentrations, the optimal temperatures for removal by this biofilter decreased to less than 20 degrees C at the most rapid flux for all three compounds. Microbial activity was decreased at these cooler temperatures suggesting the biofilter was not microbially limited but rather was limited by the availability of substrate. The cooler temperatures allowed greater partitioning of the VOCs into the water column which had a greater impact on removal than its reduction in microbial activity.


Subject(s)
Air Pollutants/isolation & purification , Air Pollution, Indoor/analysis , Air Pollution, Indoor/prevention & control , Benzene Derivatives/isolation & purification , Bioreactors , Filtration , Temperature , Toluene/isolation & purification , Xylenes
4.
Redox Rep ; 6(1): 37-42, 2001.
Article in English | MEDLINE | ID: mdl-11333114

ABSTRACT

Adequate responses to environmental changes are crucial for plant growth and survival. However, the molecular and biochemical mechanisms involved are poorly understood and the signaling networks remain elusive. The accumulation of active oxygen species (AOS) is a central theme during plant responses to both biotic and abiotic stresses. In both situations, AOS can play two divergent roles: either exacerbating damage or activating multiple defense responses, thereby acting as signal molecules. Such a dual function was first described in pathogenesis, but also recently has been demonstrated during several abiotic stress responses. To allow for these different roles, cellular levels of AOS must be tightly controlled. This control can be attained through a diverse battery of oxidant scavengers. Perturbation of this scavenging capacity can lead to dramatic imbalances of AOS concentrations, leading to a modified redox status. Here, we summarize mainly the work done on plants that are deficient in catalase activity. These plants not only revealed the importance of catalase in coping with environmental stress but also provided us with a powerful tool to investigate the (multiple) roles of H2O2 in an intact plant system.


Subject(s)
Catalase/genetics , Catalase/metabolism , Hydrogen Peroxide/metabolism , Nicotiana/physiology , Plants, Toxic , Free Radical Scavengers/metabolism , Gene Deletion , Models, Biological , Oxidation-Reduction , Oxidative Stress , Reactive Oxygen Species/metabolism , Nicotiana/enzymology , Nicotiana/genetics
5.
Cell Mol Life Sci ; 57(5): 779-95, 2000 May.
Article in English | MEDLINE | ID: mdl-10892343

ABSTRACT

Adaptation to environmental changes is crucial for plant growth and survival. However, the molecular and biochemical mechanisms of adaptation are still poorly understood and the signaling pathways involved remain elusive. Active oxygen species (AOS) have been proposed as a central component of plant adaptation to both biotic and abiotic stresses. Under such conditions, AOS may play two very different roles: exacerbating damage or signaling the activation of defense responses. Such a dual function was first described in pathogenesis but has also recently been demonstrated during several abiotic stress responses. To allow for these different roles, cellular levels of AOS must be tightly controlled. The numerous AOS sources and a complex system of oxidant scavengers provide the flexibility necessary for these functions. This review discusses the dual action of AOS during plant stress responses.


Subject(s)
Plants/metabolism , Reactive Oxygen Species/metabolism , Air Pollutants/toxicity , Antioxidants/metabolism , Catalase/metabolism , Light , Metals, Heavy/toxicity , NADH, NADPH Oxidoreductases/metabolism , Oxidative Stress , Photosynthesis , Plants/drug effects , Plants/radiation effects , Temperature , Ultraviolet Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...