Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Geochem Health ; 45(11): 7889-7907, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37493982

ABSTRACT

Road dust samples were collected from different areas in Ho Chi Minh City (HCMC)-the largest city in Vietnam to explore pollution characteristics, ecological and human health risks, and sources of heavy metals (HMs). Results revealed the level of HMs found in the samples from residential and industrial zones of HCMC in the order of Mn > Zn > Cu > Cr > Pb > Ni > Co > As > Cd, Zn > Mn > Cu > Cr > Pb > Ni > Co > As > Cd. Due to the high enrichment of Cu, Zn in residential areas and Cu, Pb, Zn in industrial areas, the HM contamination in these areas remained moderate to severe. The findings also revealed a rising trend in the level of HMs in road dust from the east to the west of HCMC, and a heavy metal contamination hotspot in the west. In addition, industrial areas were more contaminated with HMs, posing greater associated risks than residential areas. Children living in urban areas of HCMC were found to be exposed to unacceptable health risks. Meanwhile, adults living in industrial areas face intolerable cancer risk. Among the nine HMs, Cd, Pb, and Cu posed the greatest ecological risk, while Cr and As were the main culprits behind health risks. HMs in road dust might derive from non-exhaust vehicular emissions, crustal materials, and industrial activities. The results suggested that industrial areas to the west of HCMC should focus more on reducing and controlling severe pollution of HMs.


Subject(s)
Dust , Metals, Heavy , Child , Adult , Humans , Dust/analysis , Cadmium , Environmental Monitoring/methods , Vietnam/epidemiology , Lead , Risk Assessment , Metals, Heavy/toxicity , Metals, Heavy/analysis , Cities , China
2.
Molecules ; 28(12)2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37375190

ABSTRACT

This study investigated the occurrence of microplastics (MPs) in the gastrointestinal tracts (GT) and tissues of four common shrimps (including two wild-caught shrimps and two farmed shrimps) collected from a high-diversity lagoon in central Vietnam. The numbers of MP items in greasy-back shrimp (Metapenaeus ensis), green tiger shrimp (Penaeus semisulcatus), white-leg shrimp (Litopenaeus vannamei), and giant tiger shrimp (Penaeus monodon), determined per weight and individual, were 0.7 ± 0.3, 0.6 ± 0.2, 1.1 ± 0.4, and 0.5 ± 0.3 (items/g-ww), and 2.5 ± 0.5, 2.3 ± 0.7, 8.6 ± 3.5, 7.7 ± 3.5 (items/individual), respectively. The concentration of microplastics in the GT samples was significantly higher than that in the tissue samples (p < 0.05). The number of microplastics in the farmed shrimp (white-leg shrimp and black tiger shrimp) was statistically significantly higher than the number of microplastics in the wild-caught shrimp (greasy-back and green tiger shrimps) (p <0.05). Fibers and fragments were the dominant shapes of the MPs, followed by pellets, and these accounted for 42-69%, 22-57%, and 0-27% of the total microplastics, respectively. The chemical compositions determined using FTIR confirmed six polymers, in which rayon was the most abundant polymer, accounting for 61.9% of the MPs found, followed by polyamide (10.5%), PET (6.7%), polyethylene (5.7%), polyacrylic (5.8%), and polystyrene (3.8%). As the first investigation on the MPs in shrimps from Cau Hai Lagoon, central Vietnam, this study provides useful information on the occurrences and characteristics of the microplastics in the gastrointestinal tracts and tissues of four shrimp species that live in different living conditions.


Subject(s)
Penaeidae , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Vietnam , Polymers , Water Pollutants, Chemical/analysis , Environmental Monitoring
3.
Environ Res ; 218: 114927, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36460071

ABSTRACT

This study aimed to develop an extremely highly porous activated carbon derived from soybean curd residues (SCB-AC) through two-step pyrolyzing coupled with KOH activating process and then apply it for removing paracetamol (PRC) and tetracycline (TCH) from water. The optimal conditions for chemical activation were 800 °C and the ratio of KOH to material (4/1; wt./wt.). SCB-AC adsorbents (before and after adsorption) were characterized by Brunauer-Emmet-Teller (BET) analyser, Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy, and Raman spectroscopy. Adsorption kinetics, isotherm, and thermodynamics were concluded under batch experiments. The effects of pH (2-10) and NaCl (0-1 M) on adsorption processes were investigated. Reusable properties of laden SCB-AC were evaluated by studying desorption and cycles of adsorption/desorption. Results indicated that SCB-AC exhibited a large specific surface area (3306 m2/g) and high total pore volume (2.307 cm3/g), with mesoporous volume accounting for 86.9%. Its porosity characteristics (average pore width: 2.725 nm) are very appropriate for adsorbing two pharmaceuticals through pore-filling mechanism. Adsorption processes were less affected by the parameters: pH, NaCl, and water matrixes. The kinetics for adsorbing PRC reached a faster equilibrium than that for TCH. The Langmuir maximum adsorption capacity of SCB-AC (pHeq 7.0 and 25 °C) was 1235 mg/g (for adsorbing TCH) and 646 mg/g (PRC). Pore filling (confirmed by BET analyser) and π-π interaction (confirmed by FTIR and Raman spectroscopy) were dominant adsorption mechanisms. Those mechanisms were physisorption (ΔH° = 13.71 and -21.04 kJ/mol for adsorbing TCH and PRC, respectively). SCB-AC can serve as an outstanding material for removing pharmaceuticals from water.


Subject(s)
Acetaminophen , Water Pollutants, Chemical , Adsorption , Sodium Chloride , Water Pollutants, Chemical/analysis , Tetracycline , Anti-Bacterial Agents , Thermodynamics , Kinetics , Spectroscopy, Fourier Transform Infrared , Pharmaceutical Preparations , Hydrogen-Ion Concentration
4.
Beilstein J Nanotechnol ; 13: 1108-1119, 2022.
Article in English | MEDLINE | ID: mdl-36262177

ABSTRACT

Zinc oxide nanoparticles (ZnO NPs) were successfully synthesized by a green method using rosin and zinc chloride as salt precursors. The phase structure, morphology, and particle size of ZnO were determined by X-ray powder diffraction, field emission scanning electron microscopy, and high-resolution transmission electron microscopy. The fabricated ZnO NP samples are crystalline with a grain size of 30-100 nm. The ZnO NPs were used as catalysts for the photodegradation of methylene blue (MB) and methyl orange (MO) under visible and UV light. The results indicate that the prepared ZnO material excellently removed MB and MO (c initial = 10 mg/L) with efficiencies of 100% and 82.78%, respectively, after 210 min under UV radiation with a ZnO NP dose of 2 g/L. The photocatalyst activity of the synthesized material was also tested under visible light radiation with the same conditions; however, it achieved lower efficiencies. In addition, ZnO NPs were also tested regarding their antibacterial activity, and the results showed that the prepared ZnO samples had the highest (i.e., 100%) antibacterial efficiency against E. coli.

5.
Environ Sci Pollut Res Int ; 29(29): 44054-44066, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35122647

ABSTRACT

This is the first investigation on overall characteristics of 25 polycyclic aromatic hydrocarbons (PAHs) (15 PAHs regulated by US-EPA (excluding naphthalene) and 16 PAHs recommended by the European Union) in ambient air of Ho Chi Minh City, Vietnam. Their levels, congener profiles, gas/particle partitioning, potential sources of atmospheric PAHs (gas and particulate phases), and lung cancer risks in the dry and rainy seasons were examined. The ∑25 PAH concentration in the dry and rainy seasons ranged from 8.79 to 33.2 ng m-3 and 26.0 to 60.0 ng m-3, respectively. Phenanthrene and Indeno[123-cd]pyrene were major contributors to gaseous and particulate PAHs, respectively, while benzo[c]fluorene was dominant component of the total BaP-TEQ. The ∑16 EU-PAH concentration contributed to 13 ± 2.7% of the total ∑ 25 PAH concentration; however, they composed over 99% of the total ∑ 25 PAH toxic concentration. Adsorption mainly governed the phase partitioning of PAHs because the slope of correlation between logKp and logP0L was steeper than - 1. Vehicular emission was the primary source of PAHs in two seasons; however, PAHs in the dry season were also originated from biomass burning. Assessment of lung cancer risk showed that children possibly exposed to potential lung cancer risk via inhalation.


Subject(s)
Air Pollutants , Lung Neoplasms , Polycyclic Aromatic Hydrocarbons , Air Pollutants/analysis , Child , Coal , Dust , Environmental Monitoring , Gases , Humans , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Risk Assessment , Seasons , Vietnam
6.
Korean J Chem Eng ; : 1-10, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35095157

ABSTRACT

This study developed a new α-Fe2O3 (hematite) nanoparticles-loaded spherical biochar (H-SB) through the direct pyrolysis of glucose-derived spherical hydrochar and FeCl3. The optimal impregnation ratio (hydrochar and FeCl3) was 1/1.25 (wt/wt). H-SB was applied to remove paracetamol (PRC) from water. Results indicated that H-SB exhibited a relatively low surface area (127 m2/g) and total pore volume (0.089 cm3/g). The presence of iron particles in its surface was confirmed by scanning electron microscopy with energy dispersive spectroscopy. The dominant form of iron nanoparticles (α-Fe2O3) in its surface was confirmed by X-ray powder diffraction and Raman spectrum. The crystallite size of α-Fe2O3 in H-SB was 27.4 nm. The saturation magnetization of H-SB was 6.729 cmu/g. The analysis of Fourier-transform infrared spectroscopy demonstrated that the C-O and O-H groups were mainly responsible for loading α-Fe2O3 nanoparticles in its surface. The adsorption study indicated the amount of PRC adsorbed by H-SB slightly decreased within solution pH from 2 to 11. The adsorption reached a fast saturation after 120 min. The Langmuir maximum adsorption capacity of H-SB was 49.9 mg/g at 25 °C and pH 7.0. Ion-dipole interaction and π-π interaction played an important role in adsorption mechanisms, while hydrogen bonding and pore filling were minor. Therefore, H-SB can serve as a promising material for treating PRC-contaminated water streams. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material is available in the online version of this article at 10.1007/s11814-021-1013-z.

7.
Chemosphere ; 288(Pt 2): 132577, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34662641

ABSTRACT

In this study, biochar derived from spent coffee grounds (SCGB) was used to adsorb norfloxacin (NOR) in water. The biochar properties were interpreted by analysis of the specific surface area, morphology, structure, thermal stability, and functional groups. The impacts of pH, NOR, and ion's present on SCGB performance were examined. The NOR adsorption mode of SCGB is best suited to the Langmuir model (R2 = 0.974) with maximum absorption capacity (69.8 mg g-1). By using a Response Surface Method (RSM), optimal adsorption was also found at pH of 6.26, NOR of 24.69 mg L-1, and SCGB of 1.32 g L-1. Compared with biochars derived from agriculture such as corn stalks, willow branches, potato stem, reed stalks, cauliflower roots, wheat straw, the NOR adsorption capacity of SCGB was 2-30 times higher, but less than 3-4 times for biochars made from Salix mongolica, luffa sponge and polydopamine microspheres. These findings reveal that spent coffee grounds biochar could effectively remove NOR from aqueous solutions. Approaching biochar derived from coffee grounds would be a promising eco-friendly solution because it utilizes solid waste, saves costs, and creates adsorbents to deal with emerging pollutants like antibiotics.


Subject(s)
Coffee , Norfloxacin , Adsorption , Charcoal , Water
8.
Environ Sci Pollut Res Int ; 28(36): 50405-50419, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33954920

ABSTRACT

This study investigates distribution, pollution indices, and potential risk assessment for human health and ecology of eight heavy metals in twenty-five street dust samples collected from metropolitan area-Ho Chi Minh City, Vietnam. Results showed that Zn was of the highest concentration (466.4 ± 236.5 mg/kg), followed by Mn (393.9 ± 93.2 mg/kg), Cu (153.7 ± 64.7 mg/kg), Cr (102.4 ± 50.5 mg/kg), Pb (49.6 ± 21.4 mg/kg), Ni (36.2 ± 15.4 mg/kg), Co (7.9 ± 1.9 mg/kg), and Cd (0.5 ± 0.5 mg/kg). The principal component analysis revealed that three sources of heavy metals measured in street dust include vehicular activities (32.38%), mixed source of vehicular and residential activities (26.72%), and mixture of industrial and natural sources (20.23%). The geo-accumulation index values showed levels of non-pollution to moderately pollution for Mn and Co; moderately pollution for Ni; moderately to strongly pollution for Cd, Cr, and Pb; and strongly pollution for Cu and Zn. The potential ecological risk values of all sampling sites were close to the high-risk category. Zn (28.9%), Cu (25.4%), and Mn (24.4%) dominantly contributed to the ecological risk. For non-carcinogenic risk, the hazard quotient values for both children and adults were within a safety level. For carcinogenic risk, the TCRChildren was about 3 times higher than TCRAdults, but still within a tolerable limit (1 × 10-6 to 1 × 10-4) of cancer risk. Cr was a major contribution to potential risks in humans. Such studies on heavy metal in street dust are crucial but are still limited in Vietnam/or metropolitan area in Southeast Asia. Therefore, this study can fill the information gap about heavy metal contaminated street dust in a metropolitan area of Vietnam.


Subject(s)
Dust , Metals, Heavy , Adult , Child , China , Cities , Dust/analysis , Environmental Monitoring , Environmental Pollution/analysis , Humans , Metals, Heavy/analysis , Risk Assessment , Vietnam
9.
Ecotoxicol Environ Saf ; 212: 111971, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33513480

ABSTRACT

In this study, an AhR-responsive reporter-gene cell-based bioassay CALUX was used to assess the biological potency of dioxins and dioxin-like PCBs (dl-PCBs) in top soil samples collected from a former airbase (A-So) and remote regions from urban and agricultural areas in Thua Thien Hue, Vietnam. In top soil collected from A-So airbase, Bioanalytical EQuivalent (BEQ) concentrations of up to 2700 pg 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) per g dry weight (pg BEQ-TCDD g-1 dw) were assessed. Interestingly, while BEQ values for dl-PCBs were found to be up to 13 pg BEQ-TCDD g-1 dw, the dl-PCB activity was not detected in all the hotspot sample extracts. In contrasts, BEQ values for dioxin like compounds from remote regions were much lower and occasionally below the quantification limits of the method. The BEQ activities obtained in this study have a similar trend to the WHO-TEQ results for the samples collected in the A-So airbase. However, BEQ values were higher than those of TEQ, probably reflecting the presence of additional AhR ligands and/or possible non-additive interactions in the sample mixture. This study confirms that after more than 60 years, a strong residual pollution of PCDD/Fs remains on this former air base following the use and storage of Agent Orange during the Vietnam War, raising a health risk for populations exposed in this area because livestock animals graze there.


Subject(s)
Agent Orange , Environmental Monitoring , Soil Pollutants/analysis , Animals , Benzofurans , Biological Assay/methods , Dibenzofurans , Dioxins/toxicity , Genes, Reporter , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins , Soil , Soil Pollutants/toxicity , Vietnam
10.
Chemosphere ; 253: 126651, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32283424

ABSTRACT

This study investigated the characteristics of dl-PCNs, PCDD/Fs and dl-PCBs emitted from two typical secondary copper metallurgical plants processing copper sludge equipped with different sets of air pollution control devices (APCDs). Results indicated that the emission factors of dl-PCNs and PCDD/Fs of plant A are 0.00775 and 1.09 µg TEQ/ton, respectively, which are remarkably lower than those of plant B (3.12, 181 and 25.5 µg TEQ/ton for dl-PCNs, PCDD/Fs and dl-PCBs, respectively). Dl-PCNs contributed 0.7-2.7% of total TEQ for flue gases and up to 2.6% of TEQ for ash samples. The TEQ concentration of dl-PCNs in fly ash individually exceeds the regulated level of 1 ng TEQ/g regulated by Taiwan EPA, indicating that emission and discharge of dl-PCNs should be regulated. The combination of semidry scrubber and activated carbon injection (ACI) + baghouse (BH) is effective for simultaneous removals of dl-PCNs and PCDD/Fs in plant A; while the combination of cyclone, secondary combustion chamber, ACI + BH and wet scrubber (WS) is not optimal for removing dl-PCNs, PCDD/Fs and dl-PCBs. Memory effect occurring within BH and WS is responsible for low removal efficiencies of these POPs in plant B. This study suggests appropriate APCDs for simultaneous removal of three POP groups and recommends the inclusion of dl-PCNs in emission standard.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Metallurgy , Coal Ash/analysis , Copper/chemistry , Dibenzofurans/chemistry , Dibenzofurans, Polychlorinated/analysis , Gases/analysis , Polychlorinated Biphenyls/analysis , Polychlorinated Dibenzodioxins/analysis , Sewage , Taiwan
11.
Chemosphere ; 252: 126541, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32217411

ABSTRACT

Emission factor and removal efficacy of PCNs are evaluated via the flue gas sampling of two MWIs equipped with different air pollution control devices (APCDs) in Taiwan. MWI-A is equipped with ESP, wet scrubber (WS) and selective catalytic reduction (SCR), while cyclone (CY), semi-dry absorber (SDA), activated carbon injection (ACI) and baghouse (BH) are employed in MWI-B. The average concentrations of PCNs measured at stacks of MWI-A and MWI-B are 2.1 ng Nm-3 (0.218 pg TEQ Nm-3) and 23.2 ng Nm-3 (0.425 pg TEQ Nm-3), respectively. The emission factors of PCNs calculated from feeding rates of waste and stack sampling results range from 6.7 to 6.95 µg t-1 (0.790-1.45 ng TEQ t-1). PCNs are formed in ESP via chlorination, while SCR and SDA + ACI + BH are effective in removing PCNs with the overall efficacies of 97.6% and 94.3%, respectively. PCN removal efficiencies achieved with SCR and SDA + ACI + BH increase as chlorination level increases. Specifically, around 72% and 82% of Mono-CN are removed by SCR and SDA + ACI + BH, respectively. The removal efficacies of other homologues achieved with SCR are consistently high (96-100%). Dominances of Mono-to Tri-CNs in scrubbing liquid collected from WS and higher removal efficacies of these homologues achieved with WS + ESP compared with ESP alone indicate that WS can capture low chlorinated PCNs to some extent. The results suggest that CY + SDA + ACI + BH should be equipped in MWI for effective removal of PCNs, while ESP, WS and SCR should be utilized with precaution to eliminate PCNs formation and enhance the PCNs removal efficiency.


Subject(s)
Environmental Monitoring , Incineration/methods , Naphthalenes/chemistry , Air Pollutants/analysis , Air Pollution/statistics & numerical data , Catalysis , Taiwan
12.
Environ Pollut ; 258: 113759, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31874436

ABSTRACT

This study investigates the characteristics of PCN emission and removal from two secondary copper metallurgical processes (plants A and B) equipped with different air pollution control devices (APCDs). Different operating conditions and feeding materials result in varying emission factors of PCNs from two plants. The average PCN concentration emitted from plant B (7597 ng Nm-3) is significantly higher than that emitted from plant A (32.5 ng Nm-3) and those reported in China (5.8-2845 ng Nm-3). Similar trend is found for fly ash samples collected from two plants. Low chlorinated homologues (Mono-to Tri-CNs) are the major contributors to total PCNs measured in flue gas, fly ash and slag samples. Combination of semi-dry absorber, activated carbon injection and baghouse is effective for PCN removal in plant A, with the overall removal efficiency of 98%. The overall removal efficiency of PCNs achieved with APCDs equipped in plant B is 90%, however, increases of some homologues as the flue gases passing through baghouse and wet scrubber are found, suggesting the occurrence of memory effect within baghouse and wet scrubber.


Subject(s)
Air Pollutants/analysis , Copper , Environmental Monitoring , Metallurgy , Pregnenolone Carbonitrile/analysis , China , Coal Ash , Naphthalenes
13.
Ecotoxicol Environ Saf ; 174: 384-389, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30849659

ABSTRACT

Sediment samples were collected from a large reservoir and a river in northern Taiwan to investigate the occurrence and characteristics of Σ73PCNs analyzed. Results indicate that total concentrations of PCNs (Di- to Octa-CNs) measured in sediments collected in reservoir (29.2 ±â€¯7.11 pg/g-dw) are significantly lower than that of samples collected in river (987 ±â€¯440 pg/g-dw). The increasing trend of PCN concentration from upstream to downstream is found for the sediments collected in reservoir. PCN concentrations measured in surface sediments are relatively higher than that measured in sub-surface sediments collected in reservoir. Tetra-CNs consistently dominate in reservoir sediments, however, Penta-, Tetra- and Mono-CNs dominate in sediments collected at different sampling sites of the river investigated, suggesting that various sources contribute to PCNs collected from river. Indeed, diagnostic ratios indicate that mix-source contribute to PCNs measured in sediments collected from the reservoir and river in northern Taiwan.


Subject(s)
Environmental Monitoring/methods , Geologic Sediments/chemistry , Hydrocarbons, Chlorinated/analysis , Naphthalenes/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Taiwan
14.
Sci Total Environ ; 661: 27-34, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30665129

ABSTRACT

A-So airbase, located in A-Luoi Valley - Central Vietnam, is a former military base occupied by US Special Forces between 1963 and 1966. The storage of Agent Orange in A-So airbase during the Vietnam War now poses a high potential for PCDD/F contamination in soils and sediments. In order to evaluate the occurrence and characteristics of PCDD/Fs in A-So former airbase, which has been reserved for a long time and suffered almost no significant anthropogenic impacts, soil and sediment samples were collected from 40 sites of two adjacent zones A and B in an area of 160,000 m2. Seventeen 2,3,7,8-substituted PCDD/Fs were analyzed using HRCG/HRMS (US EPA method 1613). Results indicate that concentrations of PCDD/Fs measured in zone A ranged from 95.0 to 4534 ng kgdw-1 (4.58 to 746 ng TEQ kgdw-1), while those in zone B were in the range of 80.8-4150 ng kgdw-1 (2.70-89.0 ng TEQ kgdw-1). The concentrations of PCDD/Fs observed in zone A are higher than those in zone B, suggesting that PCDD/Fs could be transported from zone A to zone B through surface soil erosion and runoff events. The main contributor to the total TEQ concentration was 2,3,7,8-TCDD, which was the indicator of Agent Orange contamination, accounting for 91 ±â€¯9% and 72 ±â€¯17% of the total TEQ concentrations measured in zones A and B, respectively. Comparison of PCDD/F concentrations in different soil layers reveals that the topsoil layer (at depth < 1 m) contributed 81-95% to the total PCDD/Fs in the study area, indicating that future remediation projects should focus on this topsoil layer. Since PCDD/F contamination in A-So airbase has not significantly improved for the last 20 years, remediation projects are urgently needed in order to mitigate the negative impacts of PCDD/F contamination on human health and wellbeing.

15.
Environ Pollut ; 237: 186-195, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29482024

ABSTRACT

Ambient air samples were collected simultaneously at three sites in northern Taiwan using high-volume samplers during winter and summer to evaluate the atmospheric PCN characteristics including concentration, distribution, potential sources and gas/particle partitioning. The average concentration (Σ73 PCNs from di-to octa-CN) observed at industrial site is the highest (172 ±â€¯111 pg m-3), while PCN levels measured at urban and rural sites are comparable (45.2 ±â€¯8.20 and 45.9 ±â€¯24.4 pg m-3, respectively). The PCN concentrations are higher in summer compared with those measured in winter for all three sampling sites. Gas-phase PCNs predominate in ambient air, accounting for 94 ±â€¯6.0% of total concentration. Homologue distributions of PCNs measured at industrial site are different from two other sites for both gas and particulate phases, suggesting that different sources contribute to PCNs collected at industrial site. Based on the ratios of characteristic PCN congeners and fraction of Σcombustion-related PCNs/ΣPCNs, thermal processes are identified as major sources of PCNs at industrial site. PCNs collected at urban and rural sites are mixed sources of thermal emissions and evaporation, however, more influence of thermal sources in winter and more impact of evaporation sources in summer are observed. Results of the logKp-logPL relationship indicate that both adsorption and absorption govern gas/particle partitioning of atmospheric PCNs in northern Taiwan. Furthermore, the relationship between logKp and logKOA reveals that absorption is more important in governing gas/particle partitioning of PCNs in winter compared to summer.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring , Naphthalenes/analysis , Polychlorinated Biphenyls , Seasons , Taiwan
16.
Sci Total Environ ; 609: 682-693, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28763665

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds composed of multiple aromatic rings. PAHs are ubiquitous atmospheric pollutants which are well-recognized as carcinogenic, teratogenic and genotoxic compounds. PAHs are released from incomplete combustion or pyrolysis of materials containing carbon and hydrogen, such as coal, oil, wood and petroleum products. Understanding the characteristics of PAHs in atmosphere, source profiles and technologies available for controlling PAHs emission is essential to reduce the impacts of PAHs. This paper offers an overview on concentration and distribution of atmospheric PAHs, emission factors and distribution of PAHs in different sources, and available control technologies. Characteristics of atmospheric PAHs vary with meteorological conditions and emission sources, while characteristics of PAHs emission depend on burned material and combustion condition. Combination of some technologies may be necessary for effective removal of both low-ring and high-ring PAHs.

SELECTION OF CITATIONS
SEARCH DETAIL
...