Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 33(42): 11635-11645, 2017 10 24.
Article in English | MEDLINE | ID: mdl-28793765

ABSTRACT

We have developed a theoretical and computational approach to deal with systems that involve a disparate range of spatiotemporal scales, such as those composed of colloidal particles or polymers moving in a fluidic molecular environment. Our approach is based on a multiscale modeling that combines the slow dynamics of the large particles with the fast dynamics of the solvent into a unique framework. The former is numerically solved via Molecular Dynamics and the latter via a multicomponent Lattice Boltzmann. The two techniques are coupled together to allow for a seamless exchange of information between the descriptions. Being based on a kinetic multicomponent description of the fluid species, the scheme is flexible in modeling charge flow within complex geometries and ranging from large to vanishing salt concentration. The details of the scheme are presented and the method is applied to the problem of translocation of a charged polymer through a nanopores. Lastly, we discuss the advantages and complexities of the approach.

SELECTION OF CITATIONS
SEARCH DETAIL
...