Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-31186605

ABSTRACT

With the improving energy resolution of transitionedge sensor (TES) based microcalorimeters, performance verification and calibration of these detectors has become increasingly challenging, especially in the energy range below 1 keV where fluorescent atomic X-ray lines have linewidths that are wider than the detector energy resolution and require impractically high statistics to determine the gain and deconvolve the instrumental profile. Better behaved calibration sources such as grating monochromators are too cumbersome for space missions and are difficult to use in the lab. As an alternative, we are exploring the use of pulses of 3 eV optical photons delivered by an optical fiber to generate combs of known energies with known arrival times. Here, we discuss initial results of this technique obtained with 2 eV and 0.7 eV resolution X-ray microcalorimeters. With the 2 eV detector, we have achieved photon number resolution for pulses with mean photon number up to 133 (corresponding to 0.4 keV).

2.
J Low Temp Phys ; 193(3-4): 321-327, 2018 Nov.
Article in English | MEDLINE | ID: mdl-31186584

ABSTRACT

We have specialized astronomical applications for X-ray microcalorimeters with superconducting transition edge sensors (TESs) that require exceptionally good TES performance, but which operate in the small-signal regime. We have therefore begun a program to carefully characterize the entire transition surface of TESs with and without the usual zebra stripes to see if there are reproducible local "sweet spots" where the performance is much better than average. These measurements require precise knowledge of the circuit parameters. Here, we show how the Shapiro effect can be used to precisely calibrate the value of the shunt-resistor. We are also investigating the effects of stress and external magnetic fields to better understand reproducibility problems.

3.
Article in English | MEDLINE | ID: mdl-28804229

ABSTRACT

We are developing superconducting transition-edge sensor (TES) microcalorimeter focal planes for versatility in meeting specifications of X-ray imaging spectrometers including high count-rate, high energy resolution, and large field-of-view. In particular, a focal plane composed of two sub-arrays: one of fine-pitch, high count-rate devices and the other of slower, larger pixels with similar energy resolution, offers promise for the next generation of astrophysics instruments, such as the X-ray Integral Field Unit (X-IFU) instrument on the European Space Agency's Athena mission. We have based the sub-arrays of our current design on successful pixel designs that have been demonstrated separately. Pixels with an all gold X-ray absorber on 50 and 75 micron scales where the Mo/Au TES sits atop a thick metal heatsinking layer have shown high resolution and can accommodate high count-rates. The demonstrated larger pixels use a silicon nitride membrane for thermal isolation, thinner Au and an added bismuth layer in a 250 micron square absorber. To tune the parameters of each sub-array requires merging the fabrication processes of the two detector types. We present the fabrication process for dual production of different X-ray absorbers on the same substrate, thick Au on the small pixels and thinner Au with a Bi capping layer on the larger pixels to tune their heat capacities. The process requires multiple electroplating and etching steps, but the absorbers are defined in a single ion milling step. We demonstrate methods for integrating heatsinking of the two types of pixel into the same focal plane consistent with the requirements for each sub-array, including the limiting of thermal crosstalk. We also discuss fabrication process modifications for tuning the intrinsic transition temperature (Tc) of the bilayers for the different device types through variation of the bilayer thicknesses. The latest results on these "hybrid" arrays will be presented.

4.
J Environ Radioact ; 164: 365-368, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27569448

ABSTRACT

As a model for human tissue, this report considers the rate of free radical generation in a dilute solution of water in which a beta-emitting radionuclide is uniformly dispersed. Each decay dissipates a discrete quantity of energy, creating a large number of free radicals in a short time within a small volume determined by the beta particle range. Representing the instantaneous dissipated power as a train of randomly-spaced pulses, the time-averaged dissipated power p¯ and rate of free radical generation g¯ are derived. The analogous result in the theory of electrical circuits is known as the shot noise theorem. The reference dose of X-rays Dref producing an identical rate of free radical generation and level of oxidative stress is shown a) to increase with the square root of the absorbed dose, D, and b) to be far larger than D. This finding may have important consequences for public health in cases where the level of shot noise exceeds some noise floor corresponding to equilibrium biological processes. An estimate of this noise floor is made using the example of potassium-40, a beta-emitting radioisotope universally present in living tissue.


Subject(s)
Noise , Radiobiology , Dose-Response Relationship, Radiation , Radioisotopes , X-Rays
5.
Rev Sci Instrum ; 87(5): 054701, 2016 05.
Article in English | MEDLINE | ID: mdl-27250445

ABSTRACT

The experimental investigation of a broadband far-infrared meta-material absorber is described. The observed absorptance is >0.95 from 1 to 20 THz (300-15 µm) over a temperature range spanning 5-300 K. The meta-material, realized from an array of tapers ≈100 µm in length, is largely insensitive to the detailed geometry of these elements and is cryogenically compatible with silicon-based micro-machined technologies. The electromagnetic response is in general agreement with a physically motivated transmission line model.

6.
Rev Sci Instrum ; 80(5): 056104, 2009 May.
Article in English | MEDLINE | ID: mdl-19485541

ABSTRACT

We have developed a compact, computer-piloted, high sensitivity broadband imaging system for laboratory research that is compatible with various detectors. Mirror optics allow application from the visible to the far infrared spectral range. A prototype tested in conjunction with a mercury cadmium telluride detector exhibits a peak detectivity of 6.7x10(10) cm Hz(1/2)/W at a wavelength of 11.8 microm. Temperature and spatial resolutions of 0.06 K and 1.6 mrad, respectively, were demonstrated.


Subject(s)
Research/instrumentation , Thermography/instrumentation , Cadmium Compounds , Equipment Design , Laboratories , Mercury Compounds , Nitrogen/chemistry , Research Design , Temperature , Thermography/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...