Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 55(1): 123-37, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24910095

ABSTRACT

NCOA4 is a transcriptional coactivator of nuclear hormone receptors that undergoes gene rearrangement in human cancer. By combining studies in Xenopus laevis egg extracts and mouse embryonic fibroblasts (MEFs), we show here that NCOA4 is a minichromosome maintenance 7 (MCM7)-interacting protein that is able to control DNA replication. Depletion-reconstitution experiments in Xenopus laevis egg extracts indicate that NCOA4 acts as an inhibitor of DNA replication origin activation by regulating CMG (CDC45/MCM2-7/GINS) helicase. NCOA4(-/-) MEFs display unscheduled origin activation and reduced interorigin distance; this results in replication stress, as shown by the presence of fork stalling, reduction of fork speed, and premature senescence. Together, our findings indicate that NCOA4 acts as a regulator of DNA replication origins that helps prevent inappropriate DNA synthesis and replication stress.


Subject(s)
DNA Replication , Nuclear Receptor Coactivators/physiology , Replication Origin , Animals , Cells, Cultured , Cellular Senescence , HeLa Cells , Humans , Mice , Minichromosome Maintenance Complex Component 7/metabolism , Nuclear Receptor Coactivators/metabolism , Two-Hybrid System Techniques , Xenopus laevis
2.
Biochem Biophys Res Commun ; 420(3): 542-6, 2012 Apr 13.
Article in English | MEDLINE | ID: mdl-22440394

ABSTRACT

Psychrobacter, a micro-organism originally isolated from Antarctic sea water, expresses an extremely active hormone-sensitive lipase (HSL) which catalyzes the hydrolysis of fatty acid esters at very low temperature and is therefore of great potential industrial and pharmaceutical interest. An insoluble form of the entire enzyme has previously been cloned and expressed in Escherichia coli, subsequently refolded and shown to be active, whilst a shorter but completely inactive version, lacking the N-terminal 98 amino acids has been expressed in soluble form. In this study the entire enzyme has been expressed as a fully soluble protein in E. coli in the presence of either the osmolyte trehalose, plus high salt concentration, or the membrane fluidizer benzyl alcohol. Trehalose promotes protein mono-dispersion by increasing the viscosity of the growth medium for bacterial cells, thereby helping circumvent protein aggregation, whilst the heat-shock inducer benzyl alcohol stimulates the production of a network of endogenous chaperones which actively prevent protein misfolding, whilst also converting recombinant aggregates to native, correctly folded proteins. The resultant recombinant protein proved to be more stable than its previously expressed counterpart, as shown by CD and enzymatic activity data which proved the enzyme to be more active at a higher temperature than its refolded counterpart. By light scattering analysis it was shown that the newly expressed protein was monomeric. The stability of the full length native protein will help in understanding the structure of PsyHSL and the role of its regulatory N-terminal for eventual application in a myriad of biotechnological processes.


Subject(s)
Psychrobacter/enzymology , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Sterol Esterase/biosynthesis , Sterol Esterase/chemistry , Circular Dichroism , Enzyme Stability , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli/metabolism , Light , Protein Structure, Secondary , Recombinant Proteins/isolation & purification , Scattering, Radiation , Solubility , Sterol Esterase/isolation & purification , Trehalose/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...