Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 105(8): 2033-2049, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33455444

ABSTRACT

Numerous reviews and hundreds of refereed articles have been published on silicon's effects on abiotic and biotic stress as well as overall plant growth and development. The science for silicon is well-documented and comprehensive. However, even with this robust body of information, silicon is still not routinely used for alleviating plant stress and promoting plant growth and development. What is holding producers and growers back from using silicon? There are several possible reasons, which include: (i) lack of consistent information on which soil orders are low or limited in silicon, (ii) no universally accepted soil test for gauging the amounts of soluble silicon have been calibrated for many agronomic or horticultural crops, (iii) most analytical laboratories do not routinely assay plant tissue for silicon and current standard tissue digestion procedures used would render silicon insoluble, (iv) many scientists still state that plants are either silicon accumulators or non-accumulators when in reality all plants accumulate some silicon in their plant tissues, (v) silicon is not recognized as being necessary for plant development, (vi) lack of economic studies to show the benefits of applying silicon, and (vii) lack of extension outreach to present the positive benefits of silicon to producers and growers. Many of these issues mentioned above will need to be resolved if silicon is to become a standard practice to improve agronomic and horticultural crop production and plant health.


Subject(s)
Silicon , Soil , Crops, Agricultural , Stress, Physiological
2.
Plants (Basel) ; 6(4)2017 Oct 11.
Article in English | MEDLINE | ID: mdl-29019922

ABSTRACT

Field studies were established on the alluvial floodplain soils in Louisiana, from 2013 to 2015, to evaluate the effect of silicate slag applications on productivity of wheat (Triticum aestivum), under sufficient and high nitrogen (N) application rates. Treatments were arranged in a randomized complete block design, with four replications consisting of twelve treatments: a factorial combination of two N (101 and 145 kg N ha-1) and five silicate slag rates (0, 1, 2, 4.5, and 9 Mg ha-1), and two control plots (with and without lime). Nitrogen had a greater impact on wheat productivity than silicate slag application. Wheat grain yield reached over 7000 kg ha-1 with applications of 145 kg N, and 9 Mg silicate slag per ha for soil having Si level <20 mg kg-1. Yield increases due to N or Si were attributed to the increase in number of spike m-2 and grain number spike-1. Silicate slag application effectively raised soil pH, and availability of several plant-essential nutrients, including plant-available N (nitrate, NO3-), demonstrating the benefits of slag application are beyond increasing plant-available Si. The benefits of silicate slag application were clearly observed in wheat supplied with high N, and on soil with low plant-available Si.

3.
Plants (Basel) ; 6(3)2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28850079

ABSTRACT

A series of pot experiments were conducted to: (1) evaluate the effects of different Si sources (soil- and foliar-applied) on grain yield and Si accumulation of rice supplied with varying P rates, and (2) evaluate Si absorption of rice using foliar- and soil-applied Si fertilizers. Three P rates, (0, 112, and 224 kg ha-1) combined with five Si treatments (wollastonite and slag applied at 4.5 ton ha-1 and one foliar Si solution applied at 20, 40 and 80 mg Si L-1) and a check were arranged in a randomized complete block design with four replications. The presence of P and Si in the soil created a synergistic effect on soil Al, Mn, and As (P < 0.01), but not on rice growth and P uptake. Wollastonite and slag application were most effective in raising rice Si content than foliar applied Si (P < 0.001). While there was an improvement in biomass (42%) and tiller production (25%) for rice receiving foliar Si, no supporting evidence was obtained in these experiments to verify leaf surface Si absorption. The application of Si-rich materials to soil still remains the most effective method for enhancing Si uptake by plants.

4.
Annu Rev Phytopathol ; 55: 85-107, 2017 08 04.
Article in English | MEDLINE | ID: mdl-28504920

ABSTRACT

Silicon (Si) plays a pivotal role in the nutritional status of a wide variety of monocot and dicot plant species and helps them, whether directly or indirectly, counteract abiotic and/or biotic stresses. In general, plants with a high root or shoot Si concentration are less prone to pest attack and exhibit enhanced tolerance to abiotic stresses such as drought, low temperature, or metal toxicity. However, the most remarkable effect of Si is the reduction in the intensities of a number of seedborne, soilborne, and foliar diseases in many economically important crops that are caused by biotrophic, hemibiotrophic, and necrotrophic plant pathogens. The reduction in disease symptom expression is due to the effect of Si on some components of host resistance, including incubation period, lesion size, and lesion number. The mechanical barrier formed by the polymerization of Si beneath the cuticle and in the cell walls was the first proposed hypothesis to explain how this element reduced the severity of plant diseases. However, new insights have revealed that many plant species supplied with Si have the phenylpropanoid and terpenoid pathways potentiated and have a faster and stronger transcription of defense genes and higher activities of defense enzymes. Photosynthesis and the antioxidant system are also improved for Si-supplied plants. Although the current understanding of how this overlooked element improves plant reaction against pathogen infections, pest attacks, and abiotic stresses has advanced, the exact mechanism(s) by which it modulates plant physiology through the potentiation of host defense mechanisms still needs further investigation at the genomic, metabolomic, and proteomic levels.


Subject(s)
Plant Diseases , Plant Physiological Phenomena , Silicon/physiology , Stress, Physiological , Droughts , Gene Expression Regulation, Plant , Plants , Proteomics
5.
Phytopathology ; 99(1): 116-21, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19055443

ABSTRACT

Rice is known to accumulate high amounts of silicon (Si) in plant tissue, which helps to decrease the intensity of many economically important rice diseases. Among these diseases, brown spot, caused by the fungus Bipolaris oryzae, is one of the most devastating because it negatively affects yield and grain quality. This study aimed to evaluate the importance of active root Si uptake in rice for controlling brown spot development. Some components of host resistance were evaluated in a rice mutant, low silicon 1 (lsi1), defective in active Si uptake, and its wild-type counterpart (cv. Oochikara). Plants were inoculated with B. oryzae after growing for 35 days in a hydroponic culture amended with 0 or 2 mMol Si. The components of host resistance evaluated were incubation period (IP), relative infection efficiency (RIE), area under brown spot progress curve (AUBSPC), final lesion size (FLS), rate of lesion expansion (r), and area under lesion expansion progress curve (AULEPC). Si content from both Oochikara and lsi1 in the +Si treatment increased in leaf tissue by 219 and 178%, respectively, over the nonamended controls. Plants from Oochikara had 112% more Si in leaf tissue than plants from lsi1. The IP of brown spot from Oochikara increased approximately 6 h in the presence of Si and the RIE, AUBSPC, FLS, r, and AULEPC were significantly reduced by 65, 75, 33, 36, and 35%, respectively. In the presence of Si, the IP increased 3 h for lsi1 but the RIE, AUBSPC, FLS, r, and AULEPC were reduced by only 40, 50, 12, 21, and 12%, respectively. The correlation between Si leaf content and IP was significantly positive but Si content was negatively correlated with RIE, AUBSPC, FLS, r, and AULEPC. Single degree-of-freedom contrasts showed that Oochikara and lsi1 supplied with Si were significantly different from those not supplied with Si for all components of resistance evaluated. This result showed that a reduced Si content in tissues of plants from lsi1 dramatically affected its basal level of resistance to brown spot, suggesting that a minimum Si concentration is needed. Consequently, the results of this study emphasized the importance of an active root Si uptake system for an increase in rice resistance to brown spot.


Subject(s)
Fungi/physiology , Genetic Predisposition to Disease , Oryza/metabolism , Plant Diseases/genetics , Silicon/metabolism , Oryza/genetics , Plant Diseases/microbiology , Plant Leaves/microbiology
6.
Phytopathology ; 94(2): 177-83, 2004 Feb.
Article in English | MEDLINE | ID: mdl-18943541

ABSTRACT

ABSTRACT Although several reports underscore the importance of silicon (Si) in controlling Magnaporthe grisea on rice, no study has associated this beneficial effect with specific mechanisms of host defense responses against this fungal attack. In this study, however, we provide evidence that higher levels of momilactone phytoalexins were found in leaf extracts from plants inoculated with M. grisea and amended with silicon (Si(+)) than in leaf extracts from inoculated plants not amended with silicon (Si(-) ) or noninoculated Si(+) and Si(-) plants. On this basis, the more efficient stimulation of the terpenoid pathway in Si(+) plants and, consequently, the increase in the levels of momilactones appears to be a factor contributing to enhanced rice resistance to blast. This may explain the lower level of blast severity observed on leaves of Si(+) plants at 96 h after inoculation with M. grisea. The results of this study strongly suggest that Si plays an active role in the resistance of rice to blast rather than the formation of a physical barrier to penetration by M. grisea.

7.
Phytopathology ; 93(5): 535-46, 2003 May.
Article in English | MEDLINE | ID: mdl-18942975

ABSTRACT

ABSTRACT Although exogenous application of silicon (Si) confers efficient control of rice blast, the probable hypothesis underlying this phenomenon has been confined to that of a mechanical barrier resulting from Si polymerization in planta. However, in this study, we provide the first cytological evidence that Si-mediated resistance to Magnaporthe grisea in rice correlates with specific leaf cell reaction that interfered with the development of the fungus. Accumulation of an amorphous material that stained densely with toluidine blue and reacted positively to osmium tetroxide was a typical feature of cell reaction to infection by M. grisea in samples from Si+ plants. As a result, the extent of fungal colonization was markedly reduced in samples from Si+ plants. In samples from Si- plants, M. grisea grew actively and colonized all leaf tissues. Cytochemi-cal labeling of chitin revealed no difference in the pattern of chitin localization over fungal cell walls of either Si+ or Si- plants at 96 h after inoculation, indicating limited production of chitinases by the rice plant as a mechanism of defense response. On the other hand, the occurrence of empty fungal hyphae, surrounded or trapped in amorphous material, in samples from Si+ plants suggests that phenolic-like compounds or phytoalexins played a primary role in rice defense response against infection by M. grisea. This finding brings new insights into the complex role played by Si in the nature of rice blast resistance.

8.
Phytopathology ; 93(3): 256-61, 2003 Mar.
Article in English | MEDLINE | ID: mdl-18944334

ABSTRACT

ABSTRACT The objective of this study was to determine the effect of silicon (Si) and rice growth stages on tissue susceptibility to sheath blight (Rhizoctonia solani Kühn) under controlled conditions. Rice plants (cv. Rio Formoso) were grown in pots containing low-Si soil amended with Si at 0, 0.48, 0.96, 1.44, and 1.92 g pot(-1) and inoculated with R. solani at the following days after emergence: 45 (four-leaf stage), 65 (eight-leaf stage), 85 (tillering), 117 (booting), and 130 (panicle exsertion). For plants inoculated with R. solani at all growth stages, Si concentration in straw increased as rate of Si increased from 0 to 1.92 g pot(-1). Concentration of calcium in the straw did not differ among plant growth stages. Although incubation period was not affected by the amount of Si added to the soil, this variable was shorter at booting and panicle exsertion stages. As the rates of Si increased in the soil, the total number of sheath blight lesions on sheaths and total area under the relative lesion extension curve decreased at all plant growth stages. The severity of sheath blight was lower at booting and panicle exsertion stages as the rates of Si increased in the soil. In general, plants grown in Si-nonamended pots and inoculated with R. solani were more vulnerable to infection at all growth stages, but especially at 45 days after emergence. Plant dry weights for inoculated plants increased as the Si rates increased from 0 to 1.92 g pot(-1). The greatest dry weight increases occurred for plants inoculated at booting and panicle exsertion stages. Si fertilization is a promising method for controlling sheath blight in areas where soil is Si deficient and when cultivars that exhibit an acceptable level of resistance to sheath blight are not available for commercial use.

SELECTION OF CITATIONS
SEARCH DETAIL
...