Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Fluids Barriers CNS ; 21(1): 38, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693577

ABSTRACT

BACKGROUND: Blood-brain barrier (BBB) disruption is a central feature of cerebral malaria (CM), a severe complication of Plasmodium falciparum (Pf) infections. In CM, sequestration of Pf-infected red blood cells (Pf-iRBCs) to brain endothelial cells combined with inflammation, hemolysis, microvasculature obstruction and endothelial dysfunction mediates BBB disruption, resulting in severe neurologic symptoms including coma and seizures, potentially leading to death or long-term sequelae. In vitro models have advanced our knowledge of CM-mediated BBB disruption, but their physiological relevance remains uncertain. Using human induced pluripotent stem cell-derived brain microvascular endothelial cells (hiPSC-BMECs), we aimed to develop a novel in vitro model of the BBB in CM, exhibiting enhanced barrier properties. METHODS: hiPSC-BMECs were co-cultured with HB3var03 strain Pf-iRBCs up to 9 h. Barrier integrity was measured using transendothelial electrical resistance (TEER) and sodium fluorescein permeability assays. Localization and expression of tight junction (TJ) proteins (occludin, zonula occludens-1, claudin-5), cellular adhesion molecules (ICAM-1, VCAM-1), and endothelial surface markers (EPCR) were determined using immunofluorescence imaging (IF) and western blotting (WB). Expression of angiogenic and cell stress markers were measured using multiplex proteome profiler arrays. RESULTS: After 6-h of co-culture with Pf-iRBCs, hiPSC-BMECs showed reduced TEER and increased sodium fluorescein permeability compared to co-culture with uninfected RBCs, indicative of a leaky barrier. We observed disruptions in localization of occludin, zonula occludens-1, and claudin-5 by IF, but no change in protein expression by WB in Pf-iRBC co-cultures. Expression of ICAM-1 and VCAM-1 but not EPCR was elevated in hiPSC-BMECs with Pf-iRBC co-culture compared to uninfected RBC co-culture. In addition, there was an increase in expression of angiogenin, platelet factor-4, and phospho-heat shock protein-27 in the Pf-iRBCs co-culture compared to uninfected RBC co-culture. CONCLUSION: These findings demonstrate the validity of our hiPSC-BMECs based model of the BBB, that displays enhanced barrier integrity and appropriate TJ protein localization. In the hiPSC-BMEC co-culture with Pf-iRBCs, reduced TEER, increased paracellular permeability, changes in TJ protein localization, increase in expression of adhesion molecules, and markers of angiogenesis and cellular stress all point towards a novel model with enhanced barrier properties, suitable for investigating pathogenic mechanisms underlying BBB disruption in CM.


Subject(s)
Blood-Brain Barrier , Induced Pluripotent Stem Cells , Malaria, Cerebral , Blood-Brain Barrier/metabolism , Humans , Malaria, Cerebral/metabolism , Endothelial Cells/metabolism , Cells, Cultured , Coculture Techniques , Models, Biological
2.
Front Neurol ; 15: 1321239, 2024.
Article in English | MEDLINE | ID: mdl-38562423

ABSTRACT

Traumatic brain injury (TBI), in any form and severity, can pose risks for developing chronic symptoms that can profoundly hinder patients' work/academic, social, and personal lives. In the past 3 decades, a multitude of pharmacological, stimulation, and exercise-based interventions have been proposed to ameliorate symptoms, memory impairment, mental fatigue, and/or sleep disturbances. However, most research is preliminary, thus limited influence on clinical practice. This review aims to systematically appraise the evidence derived from randomized controlled trials (RCT) regarding the effectiveness of pharmacological, stimulation, and exercise-based interventions in treating chronic symptoms due to TBI. Our search results indicate that despite the largest volume of literature, pharmacological interventions, especially using neurostimulant medications to treat physical, cognitive, and mental fatigue, as well as daytime sleepiness, have yielded inconsistent results, such that some studies found improvements in fatigue (e.g., Modafinil, Armodafinil) while others failed to yield the improvements after the intervention. Conversely, brain stimulation techniques (e.g., transcranial magnetic stimulation, blue light therapy) and exercise interventions were effective in ameliorating mental health symptoms and cognition. However, given that most RCTs are equipped with small sample sizes, more high-quality, larger-scale RCTs is needed.

3.
Blood ; 143(14): 1425-1428, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38169476

ABSTRACT

ABSTRACT: After starting hydroxyurea treatment, Ugandan children with sickle cell anemia had 60% fewer severe or invasive infections, including malaria, bacteremia, respiratory tract infections, and gastroenteritis, than before starting hydroxyurea treatment (incidence rate ratio, 0.40 [95% confidence interval, 0.29-0.54]; P < .001).


Subject(s)
Anemia, Sickle Cell , Malaria , Child , Humans , Hydroxyurea/therapeutic use , Antisickling Agents/therapeutic use , Uganda/epidemiology , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/epidemiology , Malaria/complications , Malaria/drug therapy , Malaria/epidemiology
4.
Brain Commun ; 5(6): fcad323, 2023.
Article in English | MEDLINE | ID: mdl-38075948

ABSTRACT

Persistent neurodisability is a known complication in paediatric survivors of cerebral malaria and severe malarial anaemia. Tau, ubiquitin C-terminal hydrolase-L1, neurofilament-light chain, and glial fibrillary acidic protein have proven utility as biomarkers that predict adverse neurologic outcomes in adult and paediatric disorders. In paediatric severe malaria, elevated tau is associated with mortality and neurocognitive complications. We aimed to investigate whether a multi-analyte panel including ubiquitin C-terminal hydrolase-L1, neurofilament-light chain, and glial fibrillary acidic protein can serve as biomarkers of brain injury associated with mortality and neurodisability in cerebral malaria and severe malarial anaemia. In a prospective cohort study of Ugandan children, 18 months to 12 years of age with cerebral malaria (n = 182), severe malarial anaemia (n = 158), and asymptomatic community children (n = 118), we measured admission blood levels of ubiquitin C-terminal hydrolase-L1, neurofilament-light chain, and glial fibrillary acidic protein. We investigated differences in biomarker levels, associations with mortality, blood-brain barrier integrity, neurodeficits and cognitive Z-scores in survivors up to 24-month follow-up. Admission ubiquitin C-terminal hydrolase-L1 levels were elevated >95th percentile of community children in 71 and 51%, and neurofilament-light chain levels were elevated >95th percentile of community children in 40 and 37% of children with cerebral malaria and severe malarial anaemia, respectively. Glial fibrillary acidic protein was not elevated in disease groups compared with controls. In cerebral malaria, elevated neurofilament-light chain was observed in 16 children who died in hospital compared with 166 survivors (P = 0.01); elevations in ubiquitin C-terminal hydrolase-L1 levels were associated with degree of blood-brain barrier disruption (P = 0.01); and the % predictive value for neurodeficits over follow-up (discharge, 6-, 12-, and 24 months) increased for ubiquitin C-terminal hydrolase-L1 (60, 67, 72, and 83), but not neurofilament-light chain (65, 68, 60, and 67). In cerebral malaria, elevated ubiquitin C-terminal hydrolase-L1 was associated with worse memory scores in children <5 years at malaria episode who crossed to over 5 years old during follow-up cognitive testing [ß -1.13 (95% confidence interval -2.05, -0.21), P = 0.02], and elevated neurofilament-light chain was associated with worse attention in children ≥5 years at malaria episode and cognitive testing [ß -1.08 (95% confidence interval -2.05, -1.05), P = 0.03]. In severe malarial anaemia, elevated ubiquitin C-terminal hydrolase-L1 was associated with worse attention in children <5 years at malaria episode and cognitive testing [ß -0.42 (95% confidence interval -0.76, -0.07), P = 0.02]. Ubiquitin C-terminal hydrolase-L1 and neurofilament-light chain levels are elevated in paediatric cerebral malaria and severe malarial anaemia. In cerebral malaria, elevated neurofilament-light chain is associated with mortality whereas elevated ubiquitin C-terminal hydrolase-L1 is associated with blood-brain barrier dysfunction and neurodeficits over follow-up. In cerebral malaria, both markers are associated with worse cognition, while in severe malarial anaemia, only ubiquitin C-terminal hydrolase-L1 is associated with worse cognition.

5.
Pediatr Res ; 2023 Nov 25.
Article in English | MEDLINE | ID: mdl-38007518

ABSTRACT

BACKGROUND: The relationship of apolipoprotein-E4 (APOE4) to mortality and cognition after severe malaria in children is unknown. METHODS: APOE genotyping was performed in children with cerebral malaria (CM, n = 261), severe malarial anemia (SMA, n = 224) and community children (CC, n = 213). Cognition was assessed over 2-year follow-up. RESULTS: A greater proportion of children with CM or SMA than CC had APOE4 (n = 162, 31.0%; n = 142, 31.7%; n = 103, 24.2%, respectively, p = 0.02), but no difference was seen in APOE3 (n = 310, 59.4%; n = 267, 59.6%; n = 282, 66.2%, respectively, p = 0.06), or APOE2 (n = 50, 9.6%; n = 39, 8.7%; and n = 41, 9.6%, respectively, p = 0.87). APOE4 was associated with increased mortality in CM (odds ratio, 2.28; 95% CI, 1.01, 5.11). However, APOE4 was associated with better long-term cognition (ß, 0.55; 95% CI, 0.04, 1.07, p = 0.04) and attention (ß 0.78; 95% CI, 0.26, 1.30, p = 0.004) in children with CM < 5 years old, but worse attention (ß, -0.90; 95% CI, -1.69, -0.10, p = 0.03) in children with CM ≥ 5 years old. Among children with CM, risk of post-discharge malaria was increased with APOE4 and decreased with APOE3. CONCLUSIONS: APOE4 is associated with higher risk of CM or SMA and mortality in children with CM, but better long-term cognition in CM survivors <5 years of age.

6.
Sci Rep ; 13(1): 14720, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37679382

ABSTRACT

Severe anemia is an important contributor to mortality in children with severe malaria. Anemia in malaria is a multi-factorial complication, since dyserythropoiesis, hemolysis and phagocytic clearance of uninfected red blood cells (RBCs) can contribute to this syndrome. High levels of oxidative stress and immune dysregulation have been proposed to contribute to severe malarial anemia, facilitating the clearance of uninfected RBCs. In a cohort of 552 Ugandan children with severe malaria, we measured the levels of xanthine oxidase (XO), an oxidative enzyme that is elevated in the plasma of malaria patients. The levels of XO in children with severe anemia were significantly higher compared to children with severe malaria not suffering from severe anemia. Levels of XO were inversely associated with RBC hemoglobin (ρ = - 0.25, p < 0.0001), indicating a relation between this enzyme and severe anemia. When compared with the levels of immune complexes and of autoimmune antibodies to phosphatidylserine, factors previously associated with severe anemia in malaria patients, we observed that XO is not associated with them, suggesting that XO is associated with severe anemia through an independent mechanism. XO was associated with prostration, acidosis, jaundice, respiratory distress, and kidney injury, which may reflect a broader relation of this enzyme with severe malaria pathology. Since inhibitors of XO are inexpensive and well-tolerated drugs already approved for use in humans, the validation of XO as a contributor to severe malarial anemia and other malaria complications may open new possibilities for much needed adjunctive therapy in malaria.


Subject(s)
Anemia , Malaria, Falciparum , Child , Humans , Xanthine Oxidase , Malaria, Falciparum/complications , Anemia/complications , Erythrocytes , Antigen-Antibody Complex
7.
Front Hum Neurosci ; 17: 1177242, 2023.
Article in English | MEDLINE | ID: mdl-37200952

ABSTRACT

Introduction: Cerebral malaria is one of the most severe manifestations of malaria and is a leading cause of acquired neurodisability in African children. Recent studies suggest acute kidney injury (AKI) is a risk factor for brain injury in cerebral malaria. The present study evaluates potential mechanisms of brain injury in cerebral malaria by evaluating changes in cerebrospinal fluid measures of brain injury with respect to severe malaria complications. Specifically, we attempt to delineate mechanisms of injury focusing on blood-brain-barrier integrity and acute metabolic changes that may underlie kidney-brain crosstalk in severe malaria. Methods: We evaluated 30 cerebrospinal fluid (CSF) markers of inflammation, oxidative stress, and brain injury in 168 Ugandan children aged 18 months to 12 years hospitalized with cerebral malaria. Eligible children were infected with Plasmodium falciparum and had unexplained coma. Acute kidney injury (AKI) on admission was defined using the Kidney Disease: Improving Global Outcomes criteria. We further evaluated blood-brain-barrier integrity and malaria retinopathy, and electrolyte and metabolic complications in serum. Results: The mean age of children was 3.8 years (SD, 1.9) and 40.5% were female. The prevalence of AKI was 46.3% and multi-organ dysfunction was common with 76.2% of children having at least one organ system affected in addition to coma. AKI and elevated blood urea nitrogen, but not other measures of disease severity (severe coma, seizures, jaundice, acidosis), were associated with increases in CSF markers of impaired blood-brain-barrier function, neuronal injury (neuron-specific enolase, tau), excitatory neurotransmission (kynurenine), as well as altered nitric oxide bioavailability and oxidative stress (p < 0.05 after adjustment for multiple testing). Further evaluation of potential mechanisms suggested that AKI may mediate or be associated with CSF changes through blood-brain-barrier disruption (p = 0.0014), ischemic injury seen by indirect ophthalmoscopy (p < 0.05), altered osmolality (p = 0.0006) and through alterations in the amino acids transported into the brain. Conclusion: In children with cerebral malaria, there is evidence of kidney-brain injury with multiple potential pathways identified. These changes were specific to the kidney and not observed in the context of other clinical complications.

9.
Trends Parasitol ; 39(3): 191-199, 2023 03.
Article in English | MEDLINE | ID: mdl-36737313

ABSTRACT

Severe falciparum malaria is a medical emergency and a leading cause of death and neurodisability in endemic areas. Common complications include acute kidney injury (AKI) and cerebral malaria, and recent studies have suggested links between kidney and brain dysfunction in Plasmodium falciparum infection. Here, we review these new findings and present the hypothesis of a pivotal pathogenic crosstalk between the kidneys and the brain in severe falciparum malaria. We highlight the evidence of a role for distant organ involvement in the development of cerebral malaria and subsequent neurocognitive impairment post-recovery, describe the challenges associated with current diagnostic shortcomings for both AKI and brain involvement in severe falciparum malaria, and explore novel potential therapeutic strategies.


Subject(s)
Acute Kidney Injury , Malaria, Cerebral , Malaria, Falciparum , Humans , Malaria, Cerebral/complications , Malaria, Falciparum/drug therapy , Kidney/pathology , Acute Kidney Injury/etiology , Acute Kidney Injury/diagnosis , Acute Kidney Injury/pathology , Brain , Plasmodium falciparum
10.
Blood Adv ; 7(13): 3023-3031, 2023 07 11.
Article in English | MEDLINE | ID: mdl-36735400

ABSTRACT

Data from small clinical trials in the United States and India suggest zinc supplementation reduces infection in adolescents and adults with sickle cell anemia (SCA), but no studies of zinc supplementation for infection prevention have been conducted in children with SCA living in Africa. We conducted a randomized double-blind placebo-controlled trial to assess zinc supplementation for prevention of severe or invasive infections in Ugandan children 1.00-4.99 years with SCA. Of 252 enrolled participants, 124 were assigned zinc (10 mg) and 126 assigned placebo once daily for 12 months. The primary outcome was incidence of protocol-defined severe or invasive infections. Infection incidence did not differ between treatment arms (282 vs. 270 severe or invasive infections per 100 person-years, respectively, incidence rate ratio of 1.04 [95% confidence interval (CI), 0.81, 1.32, p=0.78]), adjusting for hydroxyurea treatment. There was also no difference between treatment arms in incidence of serious adverse events or SCA-related events. Children receiving zinc had increased serum levels after 12-months, but at study exit, 41% remained zinc deficient (<65 µg/dL). In post-hoc analysis, occurrence of stroke or death was lower in the zinc treatment arm (adjusted hazard ratio (95% CI), 0.22 (0.05, 1.00); p=0.05). Daily 10 mg zinc supplementation for 12 months did not prevent severe or invasive infections in Ugandan children with SCA, but many supplemented children remained zinc deficient. Optimal zinc dosing and the role of zinc in preventing stroke or death in SCA warrant further investigation. This trial was registered at clinicaltrials.gov as #NCT03528434.


Subject(s)
Anemia, Sickle Cell , Stroke , Adult , Adolescent , Humans , Child , Zinc/therapeutic use , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/drug therapy , Stroke/etiology , Hydroxyurea/therapeutic use , Africa
11.
J Infect Dis ; 226(12): 2215-2225, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36179241

ABSTRACT

BACKGROUND: Global changes in amino acid levels have been described in severe malaria (SM), but the relationship between amino acids and long-term outcomes in SM has not been evaluated. METHODS: We measured enrollment plasma concentrations of 20 amino acids using high-performance liquid chromatography in 500 Ugandan children aged 18 months to 12 years, including 122 community children and 378 children with SM. The Kidney Disease: Improving Global Outcomes criteria were used to define acute kidney injury (AKI) at enrollment and chronic kidney disease (CKD) at 1-year follow-up. Cognition was assessed over 2 years of follow-up. RESULTS: Compared to laboratory-defined, age-specific reference ranges, there were deficiencies in sulfur-containing amino acids (methionine, cysteine) in both community children and children with SM. Among children with SM, global changes in amino acid concentrations were observed in the context of metabolic complications including acidosis and AKI. Increases in threonine, leucine, and valine were associated with in-hospital mortality, while increases in methionine, tyrosine, lysine, and phenylalanine were associated with postdischarge mortality and CKD. Increases in glycine and asparagine were associated with worse attention in children <5 years of age. CONCLUSIONS: Among children with SM, unique amino acid profiles are associated with mortality, CKD, and worse attention.


Subject(s)
Acute Kidney Injury , Malaria , Renal Insufficiency, Chronic , Child , Humans , Child, Preschool , Aftercare , Patient Discharge , Amino Acids/metabolism , Kidney/metabolism , Malaria/complications , Methionine , Renal Insufficiency, Chronic/complications , Cognition
12.
mBio ; 13(5): e0132522, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36069443

ABSTRACT

Severe malaria (SM) increases the risk of invasive bacterial infection, and there is evidence to suggest increased gastrointestinal permeability. Studies have shown sequestration of infected erythrocytes in intestinal microvasculature, and in vivo studies of rectal mucosa have demonstrated disruption of microvascular blood flow. However, the extent of intestinal injury in pediatric malaria is not well characterized. In this study, two serum biomarkers of intestinal injury, trefoil factor 3 (TFF3) and intestinal fatty acid binding protein (I-FABP), were analyzed in 598 children with SM and 120 healthy community children (CC), 6 months to 4 years of age. Serum was collected at enrollment and 1 month for laboratory studies, and participants were monitored for 12 months. Intestinal injury biomarkers were significantly elevated in children with SM, with 18.1% having levels of TFF3 and/or I-FABP greater than the 99th percentile of CC levels. TFF3 levels continued to be elevated at 1 month, while I-FABP levels were comparable to CC levels. Both markers predicted in-hospital mortality {odds ratio (OR) (95% confidence interval [CI]), 4.4 (2.7, 7.3) and 2.3 (1.7, 3.1)} for a natural log increase in TFF3 and I-FABP, respectively. TFF3 was also associated with postdischarge mortality (OR, 2.43 [95% CI, 1.1, 4.8]). Intestinal injury was associated with acute kidney injury (AKI), acidosis (P < 0.001 for both), and angiopoietin 2, a maker of endothelial activation. In conclusion, intestinal injury is common in pediatric severe malaria and is associated with an increased mortality. It is strongly associated with AKI, acidosis, and endothelial activation. IMPORTANCE In children with severe malaria, intestinal injury is a common complication associated with increased mortality. Intestinal injury is associated with acute kidney injury, acidosis, and endothelial activation. Interventions promoting intestinal regeneration and repair represent novel approaches to improve outcomes.


Subject(s)
Acute Kidney Injury , Malaria , Child , Humans , Acute Kidney Injury/etiology , Angiopoietin-2 , Biomarkers , Fatty Acid-Binding Proteins , Malaria/mortality , Patient Discharge , Trefoil Factor-3
13.
Pathog Immun ; 7(1): 60-80, 2022.
Article in English | MEDLINE | ID: mdl-35800259

ABSTRACT

Background: Murine experimental cerebral malaria studies suggest both protective and deleterious central nervous system effects from alterations in the interleukin-33 (IL-33)/ST2 pathway. Methods: We assessed whether soluble ST2 (sST2) was associated with neuronal injury or cognitive impairment in a cohort of Ugandan children with cerebral malaria (CM, n=224) or severe malarial anemia (SMA, n=193). Results: Plasma concentrations of sST2 were higher in children with CM than in children with SMA or in asymptomatic community children. Cerebrospinal fluid (CSF) sST2 levels were elevated in children with CM compared with North American children. Elevated plasma and CSF ST2 levels in children with CM correlated with increased endothelial activation and increased plasma and CSF levels of tau, a marker of neuronal injury. In children with CM who were ≥5 years of age at the time of their malaria episode, but not in children <5 years of age, elevated risk factor-adjusted plasma levels of sST2 were associated with worse scores for overall cognitive ability and attention over a 2-year follow-up. Conclusions: The study findings suggest that sST2 may contribute to neuronal injury and long-term neurocognitive impairment in older children with CM.

14.
J Infect Dis ; 226(4): 714-722, 2022 09 04.
Article in English | MEDLINE | ID: mdl-35678643

ABSTRACT

BACKGROUND: We hypothesized that oxidative stress in Ugandan children with severe malaria is associated with mortality. METHODS: We evaluated biomarkers of oxidative stress in children with cerebral malaria (CM, n = 77) or severe malarial anemia (SMA, n = 79), who were enrolled in a randomized clinical trial of immediate vs delayed iron therapy, compared with community children (CC, n = 83). Associations between admission biomarkers and risk of death during hospitalization or risk of readmission within 6 months were analyzed. RESULTS: Nine children with CM and none with SMA died during hospitalization. Children with CM or SMA had higher levels of heme oxygenase-1 (HO-1) (P < .001) and lower superoxide dismutase (SOD) activity than CC (P < .02). Children with CM had a higher risk of death with increasing HO-1 concentration (odds ratio [OR], 6.07 [95% confidence interval {CI}, 1.17-31.31]; P = .03) but a lower risk of death with increasing SOD activity (OR, 0.02 [95% CI, .001-.70]; P = .03). There were no associations between oxidative stress biomarkers on admission and risk of readmission within 6 months of enrollment. CONCLUSIONS: Children with CM or SMA develop oxidative stress in response to severe malaria. Oxidative stress is associated with higher mortality in children with CM but not with SMA. CLINICAL TRIALS REGISTRATION: NCT01093989.


Subject(s)
Anemia , Malaria, Cerebral , Malaria, Falciparum , Oxidative Stress , Patient Readmission , Anemia/physiopathology , Biomarkers/blood , Child , Heme Oxygenase-1/blood , Humans , Infant , Malaria, Cerebral/complications , Malaria, Cerebral/mortality , Malaria, Falciparum/complications , Malaria, Falciparum/mortality , Prospective Studies , Randomized Controlled Trials as Topic , Superoxide Dismutase/blood , Uganda/epidemiology
15.
Immunohorizons ; 6(6): 408-415, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35750355

ABSTRACT

There are conflicting data about level and duration of Abs to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in children after symptomatic or asymptomatic infection. In this human population, we enrolled adults and children in a prospective 6-mo study in the following categories: 1) symptomatic, SARS-CoV-2 PCR+ (SP+; children, n = 8; adults, n = 16), 2) symptomatic, PCR-, or untested (children, n = 27), 3) asymptomatic exposed (children, n = 13), and 4) asymptomatic, no known exposure (children, n = 19). Neutralizing Abs (nAbs) and IgG Abs to SARS-CoV-2 Ags and spike protein variants were measured by multiplex serological assay. All SP+ children developed nAb, whereas 81% of SP+ adults developed nAb. Decline in the presence of nAb over 6 mo was not significant in symptomatic children (100 to 87.5%; p = 0.32) in contrast to adults (81.3 to 50.0%; p = 0.03). Among children with nAb (n = 22), nAb titers and change in titers over 6 mo were similar in symptomatic and asymptomatic children. In children and adults, nAb levels postinfection were 10-fold lower than those reported after SARS-CoV-2 mRNA vaccination. Levels of IgG Abs in children to SARS-CoV-2 Ags and spike protein variants were similar to those in adults. IgG levels to primary Ags decreased over time in children and adults, but levels to three spike variants decreased only in children. Children with asymptomatic or symptomatic SARS-CoV-2 infection develop nAbs that remain present longer than in adults but wane in titer over time and broad IgG Abs that also wane in level over time. However, nAb levels were lower postinfection than those reported after immunization.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Antibodies, Neutralizing , Antibodies, Viral , Child , Humans , Immunoglobulin G , Prospective Studies , Spike Glycoprotein, Coronavirus
16.
Clin Infect Dis ; 75(9): 1511-1519, 2022 10 29.
Article in English | MEDLINE | ID: mdl-35349633

ABSTRACT

BACKGROUND: Mortality in severe malaria remains high in children treated with intravenous artesunate. Acute kidney injury (AKI) is a common complication of severe malaria, but the interactions between AKI and other complications on the risk of mortality in severe malaria are not well characterized. METHODS: Between 2014 and 2017, 600 children aged 6-48 months to 4 years hospitalized with severe malaria were enrolled in a prospective clinical cohort study evaluating clinical predictors of mortality in children with severe malaria. RESULTS: The mean age of children in this cohort was 2.1 years (standard deviation, 0.9 years) and 338 children (56.3%) were male. Mortality was 7.3%, and 52.3% of deaths occurred within 12 hours of admission. Coma, acidosis, impaired perfusion, AKI, elevated blood urea nitrogen (BUN), and hyperkalemia were associated with increased mortality (all P < .001). AKI interacted with each risk factor to increase mortality (P < .001 for interaction). Children with clinical indications for dialysis (14.4% of all children) had an increased risk of death compared with those with no indications for dialysis (odds ratio, 6.56; 95% confidence interval, 3.41-12.59). CONCLUSIONS: AKI interacts with coma, acidosis, or impaired perfusion to significantly increase the risk of death in severe malaria. Among children with AKI, those who have hyperkalemia or elevated BUN have a higher risk of death. A better understanding of the causes of these complications of severe malaria, and development and implementation of measures to prevent and treat them, such as dialysis, are needed to reduce mortality in severe malaria.


Subject(s)
Acidosis , Acute Kidney Injury , Hyperkalemia , Malaria , Child , Male , Humans , Child, Preschool , Female , Coma/complications , Prospective Studies , Cohort Studies , Hyperkalemia/complications , Acute Kidney Injury/therapy , Malaria/complications , Acidosis/complications , Risk Factors , Perfusion
17.
EClinicalMedicine ; 44: 101292, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35198918

ABSTRACT

BACKGROUND: Globally, 85% of acute kidney injury (AKI) cases occur in low-and-middle-income countries. There is limited information on persistent kidney disease (acute kidney disease [AKD]) following severe malaria-associated AKI. METHODS: Between March 28, 2014, and April 18, 2017, 598 children with severe malaria and 118 community children were enrolled in a two-site prospective cohort study in Uganda and followed up for 12 months. The Kidney Disease: Improving Global Outcomes (KDIGO) criteria were used to define AKI (primary exposure) and AKD at 1-month follow-up (primary outcome). Plasma neutrophil gelatinase-associated lipocalin (NGAL) was assessed as a structural biomarker of AKI. FINDINGS: The prevalence of AKI was 45·3% with 21·5% of children having unresolved AKI at 24 h. AKI was more common in Eastern Uganda. In-hospital mortality increased across AKI stages from 1·8% in children without AKI to 26·5% with Stage 3 AKI (p < 0·0001). Children with a high-risk plasma NGAL test were more likely to have unresolved AKI (OR, 7·00 95% CI 4·16 to 11·76) and die in hospital (OR, 6·02 95% CI 2·83 to 12·81). AKD prevalence was 15·6% at 1-month follow-up with most AKD occurring in Eastern Uganda. Risk factors for AKD included severe/unresolved AKI, blackwater fever, and a high-risk NGAL test (adjusted p < 0·05). Paracetamol use during hospitalization was associated with reduced AKD (p < 0·0001). Survivors with AKD post-AKI had higher post-discharge mortality (17·5%) compared with children without AKD (3·7%). INTERPRETATION: Children with severe malaria-associated AKI are at risk of AKD and post-discharge mortality. FUNDING: This work was supported by the National Institutes of Health National Institute of Neurological Disorders and Stroke (R01NS055349 to CCJ) and the Fogarty International Center (D43 TW010928 to CCJ), and a Ralph W. and Grace M. Showalter Young Investigator Award to ALC.

18.
JAMA Netw Open ; 4(12): e2138515, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34889945

ABSTRACT

Importance: Cerebral malaria (CM) and severe malarial anemia (SMA) are associated with persistent neurocognitive impairment (NCI) among children in Africa. Identifying blood biomarkers of acute brain injury that are associated with future NCI could allow early interventions to prevent or reduce NCI in survivors of severe malaria. Objective: To investigate whether acutely elevated tau levels are associated with future NCI in children after CM or SMA. Design, Setting, and Participants: This prospective cohort study was conducted at Mulago National Referral Hospital in Kampala, Uganda, from March 2008 to October 2015. Children aged 1.5 to 12 years with CM (n = 182) or SMA (n = 162) as well as community children (CC; n = 123) were enrolled in the study. Data analysis was conducted from January 2020 to May 2021. Exposure: CM or SMA. Main Outcomes and Measures: Enrollment plasma tau levels were measured using single-molecule array detection technology. Overall cognition (primary) and attention and memory (secondary) z scores were measured at 1 week and 6, 12, and 24 months after discharge using tools validated in Ugandan children younger than 5 years or 5 years and older. Results: A total of 467 children were enrolled. In the CM group, 75 (41%) were girls, and the mean (SD) age was 4.02 (1.92) years. In the SMA group, 59 (36%) were girls, and the mean (SD) age was 3.45 (1.60) years. In the CC group, 65 (53%) were girls, and the mean (SD) age was 3.94 (1.92) years. Elevated plasma tau levels (>95th percentile in CC group; >6.43 pg/mL) were observed in 100 children (55%) with CM and 69 children (43%) with SMA (P < .001). In children with CM who were younger than 5 years, elevated plasma tau levels were associated with increased mortality (odds ratio [OR], 3.06; 95% CI, 1.01-9.26; P = .048). In children with CM who were younger than 5 years at both CM episode and follow-up neurocognitive testing, plasma tau levels (log10 transformed) were associated with worse overall cognition scores over 24-month follow-up (ß = -0.80; 95% CI, -1.32 to -0.27; P = .003). In children with CM who were younger than 5 years at CM episode and 5 years or older at follow-up neurocognitive testing, plasma tau was associated with worse scores in attention (ß = -1.08; 95% CI, -1.79 to -0.38; P = .003) and working memory (ß = -1.39; 95% CI, -2.18 to -0.60; P = .001). Conclusions and Relevance: In this study, plasma tau, a marker of injury to neuronal axons, was elevated in children with CM or SMA and was associated with mortality and persistent NCI in children with CM younger than 5 years.


Subject(s)
Anemia/complications , Anemia/mortality , Biomarkers/blood , Malaria, Cerebral/complications , Malaria, Cerebral/mortality , Neurocognitive Disorders/etiology , Neurocognitive Disorders/mortality , tau Proteins/blood , Age Factors , Child , Child, Preschool , Cohort Studies , Early Diagnosis , Female , Humans , Infant , Male , Prospective Studies , Severity of Illness Index , Uganda
19.
Blood Adv ; 5(22): 4710-4720, 2021 11 23.
Article in English | MEDLINE | ID: mdl-34470050

ABSTRACT

Plasmodium falciparum malaria causes morbidity and mortality in African children with sickle cell anemia (SCA), but comparisons of host responses to P falciparum between children with SCA (homozygous sickle cell disease/hemoglobin SS [HbSS]) and normal hemoglobin genotype/hemoglobin AA (HbAA) are limited. We assessed parasite biomass and plasma markers of inflammation and endothelial activation in children with HbAA (n = 208) or HbSS (n = 22) who presented with severe anemia and P falciparum parasitemia to Mulago Hospital in Kampala, Uganda. Genotyping was performed at study completion. No child had known SCA at enrollment. Children with HbSS did not differ from children with HbAA in peripheral parasite density, but had significantly lower sequestered parasite biomass. Children with HbSS had greater leukocytosis but significantly lower concentrations of several plasma inflammatory cytokines, including tumor necrosis factor α (TNF-α). In contrast, children with HbSS had threefold greater concentrations of angiopoietin-2 (Angpt-2), a marker of endothelial dysregulation associated with mortality in severe malaria. Lower TNF-α concentrations were associated with increased risk of postdischarge mortality or readmission, whereas higher Angpt-2 concentrations were associated with increased risk of recurrent clinical malaria. Children with SCA have decreased parasite sequestration and inflammation but increased endothelial dysregulation during severe anemia with P falciparum parasitemia, which may ameliorate acute infectious complications but predispose to harmful long-term sequelae.


Subject(s)
Anemia, Sickle Cell , Malaria , Parasites , Aftercare , Anemia, Sickle Cell/complications , Animals , Child , Humans , Patient Discharge , Uganda/epidemiology
20.
Cell Rep ; 35(6): 109094, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33979614

ABSTRACT

Gut microbiota educate the local and distal immune system in early life to imprint long-term immunological outcomes while maintaining the capacity to dynamically modulate the local mucosal immune system throughout life. It is unknown whether gut microbiota provide signals that dynamically regulate distal immune responses following an extra-gastrointestinal infection. We show here that gut bacteria composition correlated with the severity of malaria in children. Using the murine model of malaria, we demonstrate that parasite burden and spleen germinal center reactions are malleable to dynamic cues provided by gut bacteria. Whereas antibiotic-induced changes in gut bacteria have been associated with immunopathology or impairment of immunity, the data demonstrate that antibiotic-induced changes in gut bacteria can enhance immunity to Plasmodium. This effect is not universal but depends on baseline gut bacteria composition. These data demonstrate the dynamic communications that exist among gut bacteria, the gut-distal immune system, and control of Plasmodium infection.


Subject(s)
Gastrointestinal Microbiome/immunology , Germinal Center/immunology , Malaria/immunology , Spleen/physiopathology , Animals , Disease Models, Animal , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...