Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Struct Dyn ; 10(4): 044302, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37577135

ABSTRACT

The direct observation of the structure of micrometer-sized vapor-deposited ice is performed at Pohang Accelerator Laboratory x-ray free electron laser (PAL-XFEL). The formation of micrometer-sized ice crystals and their structure is important in various fields, including atmospheric science, cryobiology, and astrophysics, but understanding the structure of micrometer-sized ice crystals remains challenging due to the lack of direct observation. Using intense x-ray diffraction from PAL-XFEL, we could observe the structure of micrometer-sized vapor-deposited ice below 150 K with a thickness of 2-50 µm grown in an ultrahigh vacuum chamber. The structure of the ice grown comprises cubic and hexagonal sequences that are randomly arranged to produce a stacking-disordered ice. We observed that ice with a high cubicity of more than 80% was transformed to partially oriented hexagonal ice when the thickness of the ice deposition grew beyond 5 µm. This suggests that precise temperature control and clean deposition conditions allow µm-thick ice films with high cubicity to be grown on hydrophilic Si3N4 membranes. The low influence of impurities could enable in situ diffraction experiments of ice nucleation and growth from interfacial layers to bulk ice.

2.
Chem Commun (Camb) ; 59(9): 1177-1180, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36628583

ABSTRACT

Light-activated H2S donors have attracted considerable interest in understanding the physiological role and clinical potential of H2S, as their release is highly localized and controlled. Herein, we have evolved a new HPQ chromophore-based fluorescent organic nanosystem localized in a target area that tolerates oxidative stress and precisely releases H2S under one- and two-photon irradiation with real-time monitoring capability. The two-photon absorption cross-section of this new phototrigger was calculated to be 283 GM at 720 nm. H2S photorelease was also demonstrated in vitro on the MDA-MB-468 cell line in the presence of excess ROS. Our developed H2S nanoprodrug can be applied to living systems to release the H2S-gasotransmitter under laser irradiation in a phototherapeutic window.


Subject(s)
Fluorescent Dyes , Hydrogen Sulfide , Humans , HeLa Cells , Hydrogen Sulfide/metabolism , Photons , Oxidative Stress
3.
Dalton Trans ; 51(35): 13435-13443, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35993453

ABSTRACT

Two brilliant outcomes of supramolecular self-assembly directed, low molecular weight organic gelator based self-healable Co(II) and Ni(II) metallogels were achieved. Adipic acid as the low molecular weight organic gelator and dimethylformamide (DMF) solvent are employed for the metallogelation process. Rheological analyses of both gel-scaffolds reveal mechanical toughness as well as visco-elasticity. Thixotropic behaviours of both the gels were scrutinized. Morphological variations due to the presence of two different metal ions with diverse metal-ligand coordinating interactions were established. The mechanistic pathways for forming stable metallogels of Co(II)-adipic acid (Co-AA) and Ni(II)-adipic acid (Ni-AA) were judiciously developed through infrared absorption spectral analysis. The nonlinear optical properties, such as the third-order process, of these synthesized metallogels were scrutinized by means of the Z-scan method at a beam excitation wavelength of 750 nm by a femtosecond laser with different excitation intensities ranging from 64 to 140 GW cm-2. The third-order nonlinear optical susceptibility (χ(3)) of the order of 10-14 esu was obtained from the measured Z-scan data. Both the metallogels exhibit positive nonlinear refraction and reverse saturable (RSA) absorption at high-intensity excitation. Co(II) and Ni(II) metallogels show nonlinear refractive indices (n2I) of (3.619 ± 0.146) × 10-6 cm2 GW-1 and (3.472 ± 0.102) × 10-6 cm2 GW-1, respectively, and two photon absorption coefficients (ß) of (1.503 ± 0.045) × 10-1 cm GW-1 and (1.381 ± 0.029) × 10-1 cm GW-1 at an excitation intensity of 140 GW cm-2. We also studied the optical limiting properties with a limiting threshold of 9.57 mJ cm-2. Therefore, both metallogels can be considered promising materials for photonic devices: for instance, for optical switching and optical limiting.

5.
J Med Chem ; 65(3): 1822-1834, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35019659

ABSTRACT

Herein, we report three new metal-free, photochemically active single, dual, and combinatorial CORMs (photoCORMs) based on a carbazole-fused 1,3-dioxol-2-one moiety which released one equivalent of CO, two equivalent of CO, and a combination of one equivalent of each CO and anticancer drug upon one- and two-photon excitation, respectively. The photoCORMs exhibited good cellular uptake and real-time monitoring ability of CO uncaging by a color change approach in cancerous B16F10 cells. Interestingly, the cytotoxicity assay on B16F10 cells indicated that the dual photoCORM has increased anticancer activity over the single and combinatorial photoCORMs upon irradiation. Our results also showed that CO could accelerate the effectiveness of the well-known anticancer drug (chlorambucil). Finally, the in vivo evaluation of the dual photoCORM on an established murine melanoma tumor (C57BL/6J mouse model) manifested a significant regression of tumor volume and led to significant improvement (>50%) in the overall survivability.


Subject(s)
Antineoplastic Agents/therapeutic use , Carbazoles/therapeutic use , Carbon Monoxide/metabolism , Dioxoles/therapeutic use , Melanoma/drug therapy , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/radiation effects , Apoptosis/drug effects , Carbazoles/chemical synthesis , Carbazoles/radiation effects , Cell Line, Tumor , Dioxoles/chemical synthesis , Dioxoles/radiation effects , Female , Infrared Rays , Mice, Inbred C57BL , Photons
6.
Phys Chem Chem Phys ; 22(8): 4731-4740, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32057048

ABSTRACT

The origin of green fluorescence in unsymmetrical four-ring bent-core liquid crystals (BCLCs) is not understood clearly. There is no analysis of the photo-physical properties, in particular, the excited state dynamical behaviour, of these molecules. Because of the availability of two proton transfer sites in these systems, there is no clear explanation of the involvement of single or double proton transfer reactions in the origin of the large Stokes shifted green fluorescence band. Therefore, we employ the femtosecond transient absorption spectroscopy technique to recognize the formation of transient species in the excited state and its associated dynamics in the femto-picosecond time domain. In order to validate the experimental photo-physical properties, the time-dependent density functional theory (TDDFT) calculations have been performed. Our results indicate that the four-ring bent-core system is an excellent example of systems exhibiting two proton transfer reactions in a sequential process. Further, these two proton transfer sites are not electronically coupled to each other; therefore, monoketo and diketo tautomers exhibit very close absorption and emission positions. The large Stokes shifted green emission in these systems is mainly contributed by the monoketo tautomer (MK-C*). The linking ester functional group of both sites plays a significant role in controlling the rate of proton transfer reactions. A good correlation is observed between theoretical and experimental results.

7.
J Phys Chem Lett ; 11(3): 591-600, 2020 Feb 06.
Article in English | MEDLINE | ID: mdl-31887041

ABSTRACT

The ambient stability, hysteresis, and trap states in organo-halide perovskite solar cells (PSCs) are correlated to the influence of interlayer interfaces and grain boundaries. Astute incorporation of Cu2ZnSnS4 (CZTS) and Au/CZTS core/shell nanocrystals (NCs) can realize the goal of simultaneously achieving better performance and ambient stability of the PSCs. With optimized Au/CZTS NC size and concentration in the photoactive layer, power conversion efficiency can be increased up to 19.97 ± 0.6% with ambient air stability >800 h, as compared to 14.46 ± 1.02% for the unmodified devices. Through efficient carrier generation by CZTS and perovskite, accompanied by the plasmonic effect of Au, carrier density is sufficiently increased as validated by transient absorption spectroscopy. NCs facilitate the interfacial charge transfer by suitable band alignment and removal of recombination centers such as metallic Pb0, surface defects, or impurity sites. NC embedding also increases the perovskite grain size and assists in pinhole filling, reducing the trap state density.

8.
Appl Opt ; 58(33): 9163-9171, 2019 Nov 20.
Article in English | MEDLINE | ID: mdl-31873592

ABSTRACT

Recently, titanium-based nanostructures with high nonlinear optical properties have found use in ultrafast photonic system applications. Here, we report a study of the third-order nonlinear optical property of the ${{\rm CuCo}_{0.5}}{{\rm Ti}_{0.5}}{{\rm O}_2}$CuCo0.5Ti0.5O2 (CCoTO) nanostructure synthesized via a simple chemical route. The 40-70 nm CCoTO nanoparticles with centrosymmetric crystalline structure show strong absorption in the 325-850 nm wavelength range due to the presence of different crystalline phases and surface vacancies. A Z-scan technique is used to study the electronic third-order nonlinearity of the synthesized nanoparticles, where a low-repetition-rate 120 fs laser source is employed to minimize thermal agitation-related nonlinearity. The CCoTO nanoparticles possess high surface defects due to oxygen- and copper-related vacancies, which are able to enhance the exciton oscillator strength resulting from the high value of third-order optical nonlinearity. The estimated values of nonlinear refractive index (${n_2}$n2) and nonlinear absorption coefficient ($\beta $ß) of the CCoTO are $ - {1.24}\; \times \;{{10}^{ - 15}}$-1.24×10-15 and ${3.79} \times {{10}^{ - 11}}$3.79×10-11, respectively, under ${188}\,\,{{\rm GW/cm}^2}$188GW/cm2 incident intensity. The intensity-dependent nonlinear optical property of the synthesized nanoparticles is also studied under different incident laser irradiation (62.7, 93, and ${188}\,\,{{\rm GW/cm}^2}$188GW/cm2). In the two-photon absorption (TPA)-dominated third-order nonlinear optical process, the values of ${n_2}$n2 and $\beta $ß of CCoTO are increased with intensifying the incident laser irradiation. The obtained high value of third-order optical nonlinearity of the synthesized nanostructure can be exploited in optical power limiters, pulse power reshaping, and optical switching applications.

9.
Chem Commun (Camb) ; 55(87): 13140-13143, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31617528

ABSTRACT

In this work, we depleted glutathione (GSH) by releasing SO2 with internal stimulus GSH itself, and also selectively marked the cancer cells followed by release of anticancer drug using another orthogonal stimulus i.e., two-photon (TP) NIR light by a single naphthalene based chromophore (TP absorbance 77 GM and uncaging cross-section 21 GM). We demonstrated the improved therapeutic efficacy of chlorambucil by the stepwise dual stimuli approach and dual surveillance of both the drug uncaging process in real-time using in vitro studies.


Subject(s)
Alkylating Agents/pharmacology , Antineoplastic Agents, Alkylating/pharmacology , Chlorambucil/pharmacology , Drug Resistance, Multiple/drug effects , Drug Resistance, Neoplasm/drug effects , Naphthalenes/pharmacology , Photons , Alkylating Agents/chemistry , Antineoplastic Agents, Alkylating/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Chlorambucil/chemistry , Drug Liberation , Drug Screening Assays, Antitumor , Glutathione/metabolism , Humans , Infrared Rays , Molecular Structure , Naphthalenes/chemistry , Optical Imaging , Sulfur Dioxide/metabolism
10.
Nanoscale ; 10(32): 15273-15284, 2018 Aug 16.
Article in English | MEDLINE | ID: mdl-30067257

ABSTRACT

Photoelectrochemical (PEC) water splitting implementing colloidal quantum dots (QDs) as sensitizers is a promising approach for hydrogen (H2) generation, due to the QD's size-tunable optical properties. However, the challenge of long-term stability of the QDs is still unresolved. Here, we introduce a highly stable QD-based PEC device for H2 generation using a photoanode based on a SnO2-TiO2 heterostructure, sensitized by CdSe/CdS core/thick-shell "giant" QDs. This hybrid photoanode architecture leads to an appreciable saturated photocurrent density of ∼4.7 mA cm-2, retaining an unprecedented ∼96% of its initial current density after two hours, and sustaining ∼93% after five hours of continuous irradiation under an AM 1.5G (100 mW cm-2) simulated solar spectrum. Transient photoluminescence (PL) measurements demonstrate that the heterostructured SnO2-TiO2 photoanode exhibits faster electron transfer compared with the bare TiO2 photoanode. The lower electron transfer rate in the TiO2 photoanode can be attributed to slow electron kinetics in the ultraviolet regime, revealed by ultrafast transient absorption spectroscopy. Graphene microplatelets were further introduced into the heterostructured photoanode, which boosted the photocurrent density to ∼5.6 mA cm-2. Our results demonstrate that the SnO2-TiO2 heterostructured photoanode holds significant potential for developing highly stable PEC cells.

11.
ACS Omega ; 3(1): 383-392, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-31457899

ABSTRACT

In this article, we have investigated the unusual dynamics of tert-butyl alcohol (TBA)-water and trimethylamine N-oxide (TMAO)-water binary mixtures using solvation dynamics as a tool. For this purpose, femtosecond transient absorption spectroscopy has been employed. Although these two molecules are isosteres to each other, a significant difference in water dynamics has been observed. The solvation times in TBA-water binary mixtures are found to be between 1.5 and 15.5 ps. On the contrary, we have observed very fast dynamics in TMAO-water binary mixtures (between 210 and 600 fs). Interestingly, unusual retardation in dynamics is observed at 0.10 mole fraction of TBA and TMAO in both the binary mixtures.

12.
Opt Express ; 24(14): 15274-88, 2016 Jul 11.
Article in English | MEDLINE | ID: mdl-27410804

ABSTRACT

The operation of a cascaded second-order mode-locked Nd:YVO4 laser has been investigated considering it as a soft-aperture Kerr lens type and using complex beam parameters. A self consistent complex beam propagation method is used to incorporate the effect of cascaded Kerr nonlinearity on radially varying gain aperturing. The analysis deduces a stable pulsewidth of ~9.5 ps which agrees well with the experimental value of 10.3 ps.

13.
Appl Opt ; 52(29): 7171-7, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24217735

ABSTRACT

A comparison has been done between the two cases when intraband effects are included and when they are excluded in the semiconductor optical amplifier model for propagating short pulses. The numerical investigation shows that the dependence of output pulse chirping and broadening on the amplifier gain, input pulse energy, and input pulsewidth becomes stronger on inclusion of intraband effects. To prove the experimental fact of pulsewidth dependency of the amplifier saturated gain for short pulses, it is compulsory to include intraband effects in the model. We prescribe here an expression for the saturation energy as a function of pulsewidth that correctly predicts the variation obtained numerically.

14.
Opt Express ; 21(1): 454-62, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23388939

ABSTRACT

Large nonlinear phase shift achieved by exploiting intracavity second order cascaded nonlinear process in a non-phasematched second harmonic generating crystal is transformed into amplitude modulation through soft aperturing the nonlinear cavity mode variation within the laser gain medium to mode-lock a Nd:YVO4 laser. The laser delivers stable dual wavelength cw mode-locked pulse train with pulse duration 10.3 ps and average power of 1.84 W and 255 mW at 1064 nm and 532 nm respectively for a pump power of 12 W. A comprehensive theoretical analysis finds the regime of self starting and stable cascaded second order mode-locking, inconformity with the experimental result.

15.
Appl Opt ; 43(11): 2347-52, 2004 Apr 10.
Article in English | MEDLINE | ID: mdl-15098838

ABSTRACT

A nonlinear mirror composed of a lithium triborate crystal and a dichroic output coupler is used to passively mode lock an Nd:YVO4 laser that is pumped by a diode laser array. A mode-locked output power of 3.2 W, a repetition rate of 178 MHz, a pulse width of 8.4 ps, and a beam quality parameter (M2) of 1.27 are obtained at 1064 nm for a pump power of 10.0 W. The numerical simulation for the steady-state pulse width agrees well with the bandwidth-limited value. A double-pass average gain g(ave) is defined by considering the constancy of the output energy. In the simulation g(ave) is kept as a free parameter, and its value required for the bandwidth-limited pulse is found to be 0.047, whereas its calculated value, based on our definition, is 0.057.

SELECTION OF CITATIONS
SEARCH DETAIL
...