Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Parasit Vectors ; 11(1): 539, 2018 Oct 04.
Article in English | MEDLINE | ID: mdl-30286802

ABSTRACT

BACKGROUND: The differently-diverged parasitic protist Giardia lamblia is known to have minimal machinery for vesicular transport. Yet, it has three paralogues of SNAP, a crucial component that together with NSF brings about disassembly of the cis-SNARE complex formed following vesicle fusion to target membranes. Given that most opisthokont hosts of this gut parasite express only one α-SNAP, this study was undertaken to determine whether these giardial SNAP proteins have undergone functional divergence. RESULTS: All three SNAP paralogues are expressed in trophozoites, encysting trophozoites and cysts. Even though one of them clusters with γ-SNAP sequences in a phylogenetic tree, functional complementation analysis in yeast indicates that all the three proteins are functionally orthologous to α-SNAP. Localization studies showed a mostly non-overlapping distribution of these α-SNAPs in trophozoites, encysting cells and cysts. In addition, two of the paralogues exhibit substantial subcellular redistribution during encystation, which was also seen following exposure to oxidative stress. However, the expression of the three genes remained unchanged during this redistribution process. There is also a difference in the affinity of each of these α-SNAP paralogues for GlNSF. CONCLUSIONS: None of the genes encoding the three α-SNAPs are pseudogenes and the encoded proteins are likely to discharge non-redundant functions in the different morphological states of G. lamblia. Based on the difference in the interaction of individual α-SNAPs with GlNSF and their non-overlapping pattern of subcellular redistribution during encystation and under stress conditions, it may be concluded that the three giardial α-SNAP paralogues have undergone functional divergence. Presence of one of the giardial α-SNAPs at the PDRs of flagella, where neither GlNSF nor any of the SNAREs localize, indicates that this α-SNAP discharges a SNARE-independent role in this gut pathogen.


Subject(s)
Giardia lamblia/metabolism , Parasite Encystment/physiology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/genetics , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/metabolism , Stress, Physiological/physiology , Amino Acid Sequence , Cell Compartmentation , Endosomes/metabolism , Gene Duplication , Genetic Complementation Test , Giardia lamblia/genetics , Giardia lamblia/growth & development , Models, Molecular , Phylogeny , Protozoan Proteins/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Soluble N-Ethylmaleimide-Sensitive Factor Attachment Proteins/chemistry , Trophozoites/metabolism
2.
Parasit Vectors ; 8: 120, 2015 Feb 24.
Article in English | MEDLINE | ID: mdl-25888841

ABSTRACT

BACKGROUND: Giardia lamblia switches its lifecycle between trophozoite and cyst forms and the proteasome plays a pivotal role in this switching event. Compared to most model eukaryotes, the proteasome of this parasite has already been documented to have certain variations. This study was undertaken to characterize the ubiquitin receptor, GlRpn10, of the 19S regulatory particle of the Giardia proteasome and determine its cellular localization in trophozoites, encysting trophozoites and cysts. METHOD: Sequence alignment and domain architecture analyses were performed to characterize GlRpn10. In vitro ubiquitin binding assay, functional complementation and biochemical studies verified the protein's ability to function as ubiquitin receptor in the context of the yeast proteasome. Immunofluorescence localization was performed with antibody against GlRpn10 to determine its distribution in trophozoites, encysting trophozoites and cysts. Real-time PCR and Western blotting were performed to monitor the expression pattern of GlRpn10 during encystation. RESULT: GlRpn10 contained a functional ubiquitin interacting motif, which was capable of binding to ubiquitin. Although it contained a truncated VWA domain, it was still capable of partially complementing the function of the yeast Rpn10 orthologue. Apart from localizing to the nucleus and cytosol, GlRpn10 was also present at flagellar pores of trophozoites and this localization was microtubule-dependent. Although there was no change in the cellular levels of GlRpn10 during encystation, its selective distribution at the flagellar pores was absent. CONCLUSION: GlRpn10 contains a noncanonical VWA domain that is partially functional in yeast. Besides the expected nuclear and cytosolic distribution, the protein displays microtubule-dependent flagellar pore localization in trophozoites. While the protein remained in the nucleus and cytosol in encysting trophozoites, it could no longer be detected at the flagellar pores. This absence at the flagellar pore regions in encysting trophozoites is likely to involve redistribution of the protein, rather than decreased gene expression or selective protein degradation.


Subject(s)
Giardia lamblia/metabolism , Giardiasis/parasitology , Proteasome Endopeptidase Complex/metabolism , Protozoan Proteins/metabolism , Ubiquitin/metabolism , Amino Acid Sequence , Animals , Giardia lamblia/genetics , Microtubules/genetics , Microtubules/metabolism , Molecular Sequence Data , Protein Structure, Tertiary , Protozoan Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Sequence Alignment , Trophozoites
SELECTION OF CITATIONS
SEARCH DETAIL
...