Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Geophys Res Space Phys ; 126(9): e2021JA029324, 2021 Sep.
Article in English | MEDLINE | ID: mdl-35846730

ABSTRACT

The Ionospheric Data Assimilation Four-Dimensional (IDA4D) technique has been coupled to Sami3, which is another model of the ionosphere (SAMI3). In this application, ground-based and space-based GPS total electron content (TEC) data have been assimilated into SAMI3, while in-situ electron densities, autoscaled ionosonde NmF2, and reference GPS stations have been used for validation. IDA4D/SAMI3 shows that night-time ionospheric localized enhancements (NILE) are formed following geomagnetic storms in November 2003 and August 2018. The NILE phenomenon appears as a moderate, longitudinally extended enhancement of NmF2 at 30°-40°N MLAT, occurring in the late evening (20-24 LT) following much larger enhancements of the equatorial anomaly crests in the main phase of the storms. The NILE appears to be caused by upward and northward plasma transport around the dusk terminator, which is consistent with eastward polarization electric fields. Independent validation confirms the presence of the NILE, and indicates that IDA4D is effective in correcting random errors and systematic biases in SAMI3. In all cases, biases and root-mean-square errors are reduced by the data assimilation, typically by a factor of 2 or more. During the most severe part of the November 2003 storm, the uncorrected ionospheric error on a GPS 3D position at 1LSU (Louisiana) is estimated to exceed 34 m. The IDA4D/SAMI3 specification is effective in correcting this down to 10 m.

2.
Geophys Res Lett ; 42(10): 3639-3646, 2015 May 28.
Article in English | MEDLINE | ID: mdl-26709318

ABSTRACT

We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. KEY POINTS: A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...