Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Clin Pharmacol Ther ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864600

ABSTRACT

Carbamazepine (CBZ) is the recommended alternative to rifampicin as a CYP3A4 inducer in drug-drug interaction studies. However, the traditional CBZ dosing paradigm can lead to several adverse events (AEs). This study tested a shorter CBZ dosing regimen using the CYP3A4-sensitive index substrate midazolam (MDZ). This was a fixed-sequence arm of an open-label, phase I study (NCT04840888). Healthy participants (n = 15) aged 18-63 years received oral doses of 1.2 mg MDZ alone (Day 1), CBZ b.i.d. alone (100 mg Days 2-4; 200 mg Days 5-7; 300 mg Days 8-10 and 12-13), and 300 mg CBZ b.i.d. plus 1.2 mg MDZ (Days 11 and 14). One participant (6.7%) experienced constipation due to treatment with CBZ plus MDZ on Day 11. One participant (6.7%) experienced urticaria (Days 12-13), and two participants (13.3%) experienced somnolence (Days 8-10) due to treatment with 300 mg CBZ b.i.d. alone. All AEs were mild. For MDZ, the geometric mean (90% CI) ratio (vs. Day 1) of the area under the curve (AUC 0-∞) was 0.28 (0.24-0.31) on Day 11 and 0.26 (0.23-0.29) on Day 14. The AUC (0-12 hours) of CBZ was 114,000 ng∙h/mL on Day 11 and 105,000 ng∙h/mL on Day 14. Steady-state concentrations of CBZ and induction of CYP3A4 were achieved on Day 11. The data are consistent with predictions of physiologically-based pharmacokinetic models in Simcyp. The 9-day dosing regimen for CBZ induction was well-tolerated by healthy participants, supporting the use of a shorter CBZ regimen for CYP3A4 induction studies.

2.
Clin Transl Sci ; 17(4): e13785, 2024 04.
Article in English | MEDLINE | ID: mdl-38572980

ABSTRACT

Real-world data (RWD) and real-world evidence (RWE) are now being routinely used in epidemiology, clinical practice, and post-approval regulatory decisions. Despite the increasing utility of the methodology and new regulatory guidelines in recent years, there remains a lack of awareness of how this approach can be applied in clinical pharmacology and translational research settings. Therefore, the American Society of Clinical Pharmacology & Therapeutics (ASCPT) held a workshop on March 21st, 2023 entitled "Advancing the Utilization of Real-World Data (RWD) and Real-World Evidence (RWE) in Clinical Pharmacology and Translational Research." The work described herein is a summary of the workshop proceedings.


Subject(s)
Pharmacology, Clinical , Humans , Translational Research, Biomedical , Translational Science, Biomedical
3.
PLoS One ; 19(4): e0293703, 2024.
Article in English | MEDLINE | ID: mdl-38630694

ABSTRACT

Many oncology antibody-drug conjugates (ADCs) have failed to demonstrate efficacy in clinic because of dose-limiting toxicity caused by uptake into healthy tissues. We developed an approach that harnesses ADC affinity to broaden the therapeutic index (TI) using two anti-mesenchymal-epithelial transition factor (MET) monoclonal antibodies (mAbs) with high affinity (HAV) or low affinity (LAV) conjugated to monomethyl auristatin E (MMAE). The estimated TI for LAV-ADC was at least 3 times greater than the HAV-ADC. The LAV- and HAV-ADCs showed similar levels of anti-tumor activity in the xenograft model, while the 111In-DTPA studies showed similar amounts of the ADCs in HT29 tumors. Although the LAV-ADC has ~2-fold slower blood clearance than the HAV-ADC, higher liver toxicity was observed with HAV-ADC. While the SPECT/CT 111In- and 124I- DTPA findings showed HAV-ADC has higher accumulation and rapid clearance in normal tissues, intravital microscopy (IVM) studies confirmed HAV mAb accumulates within hepatic sinusoidal endothelial cells while the LAV mAb does not. These results demonstrated that lowering the MET binding affinity provides a larger TI for MET-ADC. Decreasing the affinity of the ADC reduces the target mediated drug disposition (TMDD) to MET expressed in normal tissues while maintaining uptake/delivery to the tumor. This approach can be applied to multiple ADCs to improve the clinical outcomes.


Subject(s)
Immunoconjugates , Iodine Radioisotopes , Humans , Animals , Pharmaceutical Preparations , Endothelial Cells/metabolism , Cell Line, Tumor , Immunoconjugates/therapeutic use , Pentetic Acid , Xenograft Model Antitumor Assays
5.
Clin Pharmacol Ther ; 115(5): 1152-1161, 2024 May.
Article in English | MEDLINE | ID: mdl-38294091

ABSTRACT

For some patients with psoriasis, orally administered small molecule inhibitors of interleukin (IL)-17A may represent a convenient alternative to IL-17A-targeting monoclonal antibodies. This first-in-human study assessed the safety, tolerability, pharmacokinetics (PKs), and peripherally circulating IL-17A target engagement profile of single or multiple oral doses of the small molecule IL-17A inhibitor LY3509754 (NCT04586920). Healthy participants were randomly assigned to receive LY3509754 or placebo in sequential escalating single ascending dose (SAD; dose range 10-2,000 mg) or multiple ascending dose (MAD; dose range 100-1,000 mg daily for 14 days) cohorts. The study enrolled 91 participants (SAD, N = 51 and MAD, N = 40) aged 21-65 years (71% men). LY3509754 had a time to maximum concentration (Tmax) of 1.5-3.5 hours, terminal half-life of 11.4-19.1 hours, and exhibited dose-dependent increases in exposure. LY3509754 had strong target engagement, indicated by elevated plasma IL-17A levels within 12 hours of dosing. Four participants from the 400-mg (n = 1) and 1,000-mg (n = 3) MAD cohorts experienced increased liver transaminases or acute hepatitis (onset ≥ 12 days post-last LY3509754 dose), consistent with drug-induced liver injury (DILI). One case of acute hepatitis was severe, resulted in temporary hospitalization, and was classified as a serious adverse event. No adverse effects on other major organ systems were observed. Liver biopsies from three of the four participants revealed lymphocyte-rich, moderate-to-severe lobular inflammation. We theorize that the DILI relates to an off-target effect rather than IL-17A inhibition. In conclusion, despite strong target engagement and a PK profile that supported once-daily administration, this study showed that oral dosing with LY3509754 was poorly tolerated.


Subject(s)
Hepatitis , Psoriasis , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Administration, Oral , Dose-Response Relationship, Drug , Healthy Volunteers , Interleukin-17 , Psoriasis/drug therapy
6.
Clin Pharmacol Ther ; 114(4): 751-767, 2023 10.
Article in English | MEDLINE | ID: mdl-37393555

ABSTRACT

Since the 21st Century Cures Act was signed into law in 2016, real-world data (RWD) and real-world evidence (RWE) have attracted great interest from the healthcare ecosystem globally. The potential and capability of RWD/RWE to inform regulatory decisions and clinical drug development have been extensively reviewed and discussed in the literature. However, a comprehensive review of current applications of RWD/RWE in clinical pharmacology, particularly from an industry perspective, is needed to inspire new insights and identify potential future opportunities for clinical pharmacologists to utilize RWD/RWE to address key drug development questions. In this paper, we review the RWD/RWE applications relevant to clinical pharmacology based on recent publications from member companies in the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ) RWD Working Group, and discuss the future direction of RWE utilization from a clinical pharmacology perspective. A comprehensive review of RWD/RWE use cases is provided and discussed in the following categories of application: drug-drug interaction assessments, dose recommendation for patients with organ impairment, pediatric plan development and study design, model-informed drug development (e.g., disease progression modeling), prognostic and predictive biomarkers/factors identification, regulatory decisions support (e.g., label expansion), and synthetic/external control generation for rare diseases. Additionally, we describe and discuss common sources of RWD to help guide appropriate data selection to address questions pertaining to clinical pharmacology in drug development and regulatory decision making.


Subject(s)
Ecosystem , Pharmacology, Clinical , Humans , Child , Drug Development , Delivery of Health Care
7.
Drug Metab Dispos ; 51(3): 403-412, 2023 03.
Article in English | MEDLINE | ID: mdl-36460476

ABSTRACT

Bifunctional antibody (BfAb) therapeutics offer the potential for novel functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including changes in pharmacokinetics that limit the compound's therapeutic profile. A better understanding of how molecular modifications affect in vivo tissue interactions could help inform BfAb design. The present studies were predicated on the observation that a BfAb designed to have minimal off-target interactions cleared from the circulation twice as fast as the monoclonal antibody (mAb) from which it was derived. The present study leverages the spatial and temporal resolution of intravital microscopy (IVM) to identify cellular interactions that may explain the different pharmacokinetics of the two compounds. Disposition studies of mice demonstrated that radiolabeled compounds distributed similarly over the first 24 hours, except that BfAb accumulated approximately two- to -three times more than mAb in the liver. IVM studies of mice demonstrated that both distributed to endosomes of liver endothelia but with different kinetics. Whereas mAb accumulated rapidly within the first hour of administration, BfAb accumulated only modestly during the first hour but continued to accumulate over 24 hours, ultimately reaching levels similar to those of the mAb. Although neither compound was freely filtered by the mouse or rat kidney, BfAb, but not mAb, was found to accumulate over 24 hours in endosomes of proximal tubule cells. These studies demonstrate how IVM can be used as a tool in drug design, revealing unpredicted cellular interactions that are undetectable by conventional analyses. SIGNIFICANCE STATEMENT: Bifunctional antibodies offer novel therapeutic functionalities beyond those of the individual monospecific entities. However, combining these entities into a single molecule can have unpredictable effects, including undesirable changes in pharmacokinetics. Studies of the dynamic distribution of a bifunctional antibody and its parent monoclonal antibody presented here demonstrate how intravital microscopy can expand our understanding of the in vivo disposition of therapeutics, detecting off-target interactions that could not be detected by conventional pharmacokinetics approaches or predicted by conventional physicochemical analyses.


Subject(s)
Antibodies, Monoclonal , Liver , Rats , Mice , Animals , Tissue Distribution , Antibodies, Monoclonal/pharmacokinetics , Liver/metabolism , Kidney
8.
AAPS J ; 25(1): 5, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36456779

ABSTRACT

An integrated physiologically based modeling framework is presented for predicting pharmacokinetics and bioavailability of subcutaneously administered monoclonal antibodies in cynomolgus monkeys, based on in silico structure-derived metrics characterizing antibody size, overall charge, local charge, and hydrophobicity. The model accounts for antibody-specific differences in pinocytosis, transcapillary transport, local lymphatic uptake, and pre-systemic degradation at the subcutaneous injection site and reliably predicts the pharmacokinetics of five different wild-type mAbs and their Fc variants following intravenous and subcutaneous administration. Significant associations were found between subcutaneous injection site degradation rate and the antibody's local positive charge of its complementarity-determining region (R = 0.56, p = 0.0012), antibody pinocytosis rate and its overall positive charge (R = 0.59, p = 0.00063), and antibody paracellular transport and its overall charge together with hydrophobicity (R = 0.63, p = 0.00096). Based on these results, population simulations were performed to predict the relationship between bioavailability and antibody local positive charge. In addition, model simulations were conducted to calculate the relative contribution of absorption pathways (lymphatic and blood), pre-systemic degradation pathways (interstitial and lysosomal), and the influence of injection site lymph flow on antibody bioavailability and pharmacokinetics. The proposed physiologically based modeling framework integrates fundamental mechanisms governing antibody subcutaneous absorption and disposition, with structured-based physiochemical properties, to predict antibody bioavailability and pharmacokinetics in vivo.


Subject(s)
Antibodies, Monoclonal , Immunotherapy , Animals , Macaca fascicularis , Biological Availability , Injections, Subcutaneous
9.
MAbs ; 14(1): 2056944, 2022.
Article in English | MEDLINE | ID: mdl-35491902

ABSTRACT

A model-based framework is presented to predict monoclonal antibody (mAb) pharmacokinetics (PK) in humans based on in vitro measures of antibody physiochemical properties. A physiologically based pharmacokinetic (PBPK) model is used to explore the predictive potential of 14 in vitro assays designed to measure various antibody physiochemical properties, including nonspecific cell-surface interactions, FcRn binding, thermal stability, hydrophobicity, and self-association. Based on the mean plasma PK time course data of 22 mAbs from humans reported in the literature, we found a significant positive correlation (R = 0.64, p = .0013) between the model parameter representing antibody-specific vascular to endothelial clearance and heparin relative retention time, an in vitro measure of nonspecific binding. We also found that antibody-specific differences in paracellular transport due to convection and diffusion could be partially explained by antibody heparin relative retention time (R = 0.52, p = .012). Other physiochemical properties, including antibody thermal stability, hydrophobicity, cross-interaction and self-association, in and of themselves were not predictive of model-based transport parameters. In contrast to other studies that have reported empirically derived expressions relating in vitro measures of antibody physiochemical properties directly to antibody clearance, the proposed PBPK model-based approach for predicting mAb PK incorporates fundamental mechanisms governing antibody transport and processing, informed by in vitro measures of antibody physiochemical properties, and can be expanded to include more descriptive representations of each of the antibody processing subsystems, as well as other antibody-specific information.


Subject(s)
Antibodies, Monoclonal , Models, Biological , Antibodies, Monoclonal/pharmacokinetics , Heparin , Humans , Kinetics , Tissue Distribution
10.
Bioorg Med Chem ; 32: 115942, 2021 02 15.
Article in English | MEDLINE | ID: mdl-33461147

ABSTRACT

The neonatal Fc receptor (FcRn) represents a transport system with the potential to facilitate absorption of biologics across the gastrointestinal barrier. How biologics interact with FcRn to enable their gastrointestinal absorption, and how these interactions might be optimized in a biological therapeutic are not well understood. Thus, we studied the absorption of Fc molecules from the intestine using three IgG4-derived Fc variants with different, pH-dependent FcRn binding and release profiles. Using several different intestinal models, we consistently observed that FcRn binding affinity correlated with transcytosis. Our findings support targeting FcRn to enable intestinal absorption of biologics and highlight additional strategic considerations for future work.


Subject(s)
Histocompatibility Antigens Class I/chemistry , Immunoglobulin Fc Fragments/chemistry , Receptors, Fc/chemistry , Binding Sites , Cells, Cultured , Gastrointestinal Absorption , HEK293 Cells , Histocompatibility Antigens Class I/genetics , Humans , Hydrogen-Ion Concentration , Intestinal Absorption , Receptors, Fc/genetics
11.
Antibodies (Basel) ; 11(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35076469

ABSTRACT

Bispecific antibodies (BsAb) that engage multiple pathways are a promising therapeutic strategy to improve and prolong the efficacy of biologics in complex diseases. In the early stages of discovery, BsAbs often exhibit a broad range of pharmacokinetic (PK) behavior. Optimization of the neonatal Fc receptor (FcRn) interactions and removal of undesirable physiochemical properties have been used to improve the 'pharmacokinetic developability' for various monoclonal antibody (mAb) therapeutics, yet there is a sparsity of such information for BsAbs. The present work evaluated the influence of FcRn interactions and inherent physiochemical properties on the PK of two related single chain variable fragment (scFv)-based BsAbs. Despite their close relation, the two BsAbs exhibit disparate PK in cynomolgus monkeys with BsAb-1 having an aberrant clearance of ~2 mL/h/kg and BsAb-2 displaying a an ~10-fold slower clearance (~0.2 mL/h/kg). Evaluation of the physiochemical characteristics of the molecules, including charge, non-specific binding, thermal stability, and hydrophobic properties, as well as FcRn interactions showed some differences. In-depth drug disposition results revealed that a substantial disparity in the complete release from FcRn at a neutral pH is a primary factor contributing to the rapid clearance of the BsAb-1 while other biophysical characteristics were largely comparable between molecules.

12.
MAbs ; 12(1): 1770028, 2020 01 01.
Article in English | MEDLINE | ID: mdl-32486889

ABSTRACT

Many therapeutic monoclonal antibodies (mAbs) were initially developed for intravenous (IV) administration. As a means to improve mAb drug-ability and the patient experience, subcutaneous (SC) administration is an increasingly important delivery route for mAbs. Unlike IV administration, bioavailability limitations for antibodies have been reported following SC injection and can dictate whether a mAb is administered via this parenteral route. The SC bioavailability of antibodies has been difficult to predict, and it can be variable and partial, with values ranging from ~50% to 100%. The mechanisms leading to the incomplete bioavailability of some mAbs relative to others are not well understood. There are some limited data that suggest the physiochemical properties inherent to a mAb can contribute to its SC absorption, bioavailability, and in vivo fate. In this study, we evaluated the integrated influence of multiple mAb physiochemical factors on the SC absorption and bioavailability of six humanized mAbs in both rats and cynomolgus monkeys. We demonstrate the physiochemical properties of mAbs are critical to their rate and extent of SC absorption. The combination of high positive charge and hydrophobic interaction significantly reduced the rate of the evaluated mAb's SC absorption and bioavailability. Reduction or balancing of both these attributes via re-engineering the mAbs restored desirable properties of the molecules assessed. This included reduced association with SC tissue, improvements in mAb absorption from the SC space and overall SC bioavailability. Our findings point to the importance of evaluating the relative balance between various physiochemical factors, including charge, hydrophobicity, and stability, to improve the SC drug-ability of mAbs for selecting or engineering mAbs with enhanced in vivo absorption and bioavailability following SC administration.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacokinetics , Chemistry, Physical/methods , Animals , Antibodies, Monoclonal, Humanized/chemistry , Bioengineering , Biological Availability , Drug Development , Humans , Hydrophobic and Hydrophilic Interactions , Injections, Subcutaneous , Macaca fascicularis , Protein Binding , Protein Stability , Rats , Subcutaneous Absorption
13.
Antibodies (Basel) ; 9(1)2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31936270

ABSTRACT

Monoclonal antibodies have evolved from research tools to powerful therapeutics in the past 30 years. Clinical success rates of antibodies have exceeded expectations, resulting in heavy investment in biologics discovery and development in addition to traditional small molecules across the industry. However, protein therapeutics cannot drug targets intracellularly and are limited to soluble and cell-surface antigens. Tremendous strides have been made in antibody discovery, protein engineering, formulation, and delivery devices. These advances continue to push the boundaries of biologics to enable antibody conjugates to take advantage of the target specificity and long half-life from an antibody, while delivering highly potent small molecule drugs. While the "magic bullet" concept produced the first wave of antibody conjugates, these entities were met with limited clinical success. This review summarizes the advances and challenges in the field to date with emphasis on antibody conjugation, linker-payload chemistry, novel payload classes, absorption, distribution, metabolism, and excretion (ADME), and product developability. We discuss lessons learned in the development of oncology antibody conjugates and look towards future innovations enabling other therapeutic indications.

14.
Biochemistry ; 58(28): 3116-3132, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31241304

ABSTRACT

Interest in the development of bi- or multispecific antibody (BsAbs)-based biotherapeutics is growing rapidly due to their inherent ability to interact with many targets simultaneously, thereby potentially protracting their functionality relative to monoclonal antibodies (mAbs). Biophysical property assays have been used to improve the probability of clinical success for various mAb therapeutics; however, there is a paucity of such data for BsAbs. This work evaluates a fusion of an IgG with an isolated protein domain (deemed ECD) and serves to understand how molecular architecture influences biophysical and biochemical properties and, in turn, how these relate to drug disposition. The biophysical characteristics of the molecules (charge, nonspecific binding, FcRn and Fcγ receptor interactions, thermal stability, structure-dynamics, and hydrophobic properties) indicated preferred orientations of ECD and IgG, which supported better pharmacokinetic outcomes. In certain instances, in which ECD-IgG configurations led to suboptimal biophysical behavior in the form of increased hydrophobicity and global ECD instability, drug clearance was found to be increased by ≥2-fold, driven by endothelial cell-based association/clearance mechanisms in the liver, kidneys, and spleen. Improvements in the pharmacokinetic properties were afforded by positional modulation of ECD that was able to bring the disposition characteristics in line with those of the parental mAb. The findings provide some pragmatic, broadly applicable strategies and guidance for the design considerations and evaluation of ECD-BsAb constructs. Additional studies, delineating the precise interactions involved in the clearance of the ECD-BsAb constructs, remain an opportunistic area for improving their in vivo kinetic properties.


Subject(s)
Antibodies, Bispecific/physiology , Antibodies, Bispecific/pharmacokinetics , Biophysical Phenomena/physiology , Animals , Antibodies, Bispecific/chemistry , Biophysical Phenomena/drug effects , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Immunologic Factors/chemistry , Immunologic Factors/pharmacokinetics , Immunologic Factors/physiology , Macaca fascicularis , Male , Mice , Mice, Knockout , Protein Structure, Secondary , Protein Structure, Tertiary , Tissue Distribution/drug effects , Tissue Distribution/physiology
15.
Drug Metab Dispos ; 47(10): 1100-1110, 2019 10.
Article in English | MEDLINE | ID: mdl-31043438

ABSTRACT

Monoclonal antibodies (mAbs) and peptides are an important class of therapeutic modalities that have brought improved health outcomes in areas with limited therapeutic optionality. Presently, there more than 90 mAb and peptide therapeutics on the United States market, with over 600 more in various clinical stages of development in a broad array of therapeutic areas, including diabetes, autoimmune disorders, oncology, neuroscience, and cardiovascular and infectious diseases. Notwithstanding this potential, there is high clinical rate of attrition, with approximately 10% reaching patients. A major contributor to the failure of the molecules is often times an incomplete or poor understanding of the pharmacokinetics (PK) and disposition profiles leading to limited or diminished efficacy. Increased and thorough characterization efforts directed at disseminating mechanisms influencing the PK and disposition of mAbs and peptides can aid in improving the design for their intended pharmacological activity, and thereby their clinical success. The PK and disposition factors for mAbs and peptides are broadly influenced by target-mediated drug disposition and nontarget-related clearance mechanisms related to the interplay between the relationship of the structure and physiochemical properties of mAbs and peptides with physiologic processes. This review focuses on nontarget-related factors influencing the disposition and PK of mAbs and peptides. Contemporary considerations around the increasing in silico approaches to identify nontarget-related molecule limitations and enhancing the druggability of mAbs and peptides, including parenteral and nonparenteral delivery strategies that are geared toward improving patient experience and compliance, are also discussed.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Biological Products/pharmacokinetics , Models, Biological , Peptides/pharmacokinetics , Animals , Antibodies, Monoclonal/administration & dosage , Biological Products/administration & dosage , Computer Simulation , Drug Design , Humans , Injections, Intravenous , Injections, Subcutaneous/instrumentation , Injections, Subcutaneous/methods , Medication Adherence , Metabolic Clearance Rate , Peptides/administration & dosage , Self Administration/instrumentation , Self Administration/methods , Tissue Distribution
16.
Biotechnol J ; 14(3): e1800007, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29802766

ABSTRACT

There is a rapidly growing reinvigoration of the investigation of small proteins, cyclic peptides, and mAb derived domains as biotherapies. The drugability of these structures are challenged by fast peripheral clearance properties that can reduce their potential to be realized as medicines. Engineering strategies have been of limited value because mechanistically the half-life benefit is manifested by increasing the molecular weight and/or the hydrodyanimc radius which slows the molecule's renal elimination, but can result in the inherent loss of activity and target accessibility. The present work evaluated an alternative approach using smaller peptide sequences which bind to the neonatal Fc receptor (FcRn). Results revealed, small linear and cyclic FcRn binding peptides (FcRnBPs) fused to a combination of the N- and C-termini of a Fab can significantly improve the pharmacokinetics of the protein in cynomolgus monkeys relative to the parental Fab. The linear and cyclic conformations, as well as, the number of FcRnBPs fused to the Fab both influence the clearance and the extent of pharmacokinetic benefit. FcRnBP fusion protein kinetics were also affected by a combination of post-translation modifications and non-specific binding properties. The results in this report lay some foundation in fostering the advent of newer technologies toward successfully improving the pharmacokinetics of proteins, peptides, and mAb-derived domains. Additional work in the integration of a variety of factors including the intended site of action, tissue disposition, metabolism, toxicity and pharmacokinetic, and pharmacodynamics relationship of the intended therapeutic modality are key areas for advancement of these approaches.


Subject(s)
Histocompatibility Antigens Class I/metabolism , Immunoglobulin Fab Fragments/metabolism , Peptides/metabolism , Receptors, Fc/metabolism , Animals , Antibodies, Monoclonal/metabolism , Caco-2 Cells , Cell Line , Cell Line, Tumor , HEK293 Cells , Half-Life , Humans , Kinetics , Macaca fascicularis , Male , Protein Binding/physiology
17.
AAPS J ; 20(6): 103, 2018 09 25.
Article in English | MEDLINE | ID: mdl-30255287

ABSTRACT

Among the numerous antibody-drug conjugate (ADC) clinical candidates, one of the most prevalent types utilizes the interchain cysteines in antibodies to conjugate auristatin via a maleimide-containing linker. In this class of ADCs, there are a paucity of systematic studies characterizing how IgG subclass influences the biophysical properties and in vivo pharmacokinetics of the ADC molecules. In the current investigation, we studied cysteine-conjugated ADCs using a model system consisting of human IgG1, IgG2, and IgG4 antibodies with the same variable region. Our findings identified some unforeseen differences among the three ADCs. Drug conjugation profiling by LC-MS revealed that 50% of inter heavy-light chain disulfide bonds are disrupted to conjugate drugs in IgG1 antibody while only 10% in IgG2 antibody and 20% in IgG4 antibody. The solution behavior of the ADCs was interrogated in concentrating experiments and diffusion interaction parameter measurements. We found that drug conjugation affected the solution property of the three antibodies differently, with the IgG2-based ADC having the most increased propensity to aggregate. Rat PK studies using a sensitive LC-MS-based bioanalytical method showed that the IgG1-based ADC has poor peripheral linker-payload stability while the IgG2- and IgG4-based ADCs are stable. The conjugate stability of the IgG2-based ADC was further confirmed in a cynomolgus monkey PK study. Overall, the IgG2-based ADC exhibited the best PK/conjugate stability but also the most deterioration in stability among the three ADCs. Our findings provide important information and present multifactorial considerations for the selection of IgG subclass during ADC drug discovery when employing stochastic cysteine conjugation.


Subject(s)
Antibodies, Monoclonal/pharmacokinetics , Cysteine/chemistry , Immunoconjugates/pharmacokinetics , Immunoglobulin G/pharmacology , Immunoglobulin Variable Region/pharmacology , Animals , Antibodies, Monoclonal/administration & dosage , Antibodies, Monoclonal/chemistry , CHO Cells , Cricetulus , Drug Stability , Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Immunoglobulin G/chemistry , Immunoglobulin Variable Region/chemistry , Macaca fascicularis , Male , Rats , Solubility
18.
MAbs ; 8(5): 969-82, 2016 07.
Article in English | MEDLINE | ID: mdl-27111637

ABSTRACT

Bispecific antibodies (BsAbs) can affect multiple disease pathways, thus these types of constructs potentially provide promising approaches to improve efficacy in complex disease indications. The specific and non-specific clearance mechanisms/biology that affect monoclonal antibody (mAb) pharmacokinetics are likely involved in the disposition of BsAbs. Despite these similarities, there are a paucity of studies on the in vivo biology that influences the biodistribution and pharmacokinetics of BsAbs. The present case study evaluated the in vivo disposition of 2 IgG-fusion BsAb formats deemed IgG-ECD (extracellular domain) and IgG-scFv (single-chain Fv) in cynomolgus monkeys. These BsAb molecules displayed inferior in vivo pharmacokinetic properties, including a rapid clearance (> 0.5 mL/hr/kg) and short half-life relative to their mAb counterparts. The current work evaluated factors in vivo that result in the aberrant clearance of these BsAb constructs. Results showed the rapid clearance of the BsAbs that was not attributable to target binding, reduced neonatal Fc receptor (FcRn) interactions or poor molecular/biochemical properties. Evaluation of the cellular distribution of the constructs suggested that the major clearance mechanism was linked to binding/association with liver sinusoidal endothelial cells (LSECs) versus liver macrophages. The role of LSECs in facilitating the clearance of the IgG-ECD and IgG-scFv BsAb constructs described in these studies was consistent with the minimal influence of clodronate-mediated macrophage depletion on the pharmacokinetics of the constructs in cynomolgus monkeys The findings in this report are an important demonstration that the elucidation of clearance mechanisms for some IgG-ECD and IgG-scFv BsAb molecules can be unique and complicated, and may require increased attention due to the proliferation of these more complex mAb-like structures.


Subject(s)
Antibodies, Bispecific/pharmacokinetics , Capillaries/metabolism , Liver/metabolism , Animals , Half-Life , Histocompatibility Antigens Class I , Humans , Macaca fascicularis , Metabolic Clearance Rate , Receptors, Fc
19.
Drug Metab Dispos ; 44(5): 617-23, 2016 May.
Article in English | MEDLINE | ID: mdl-26669328

ABSTRACT

An antibody-drug conjugate (ADC) is a unique therapeutic modality composed of a highly potent drug molecule conjugated to a monoclonal antibody. As the number of ADCs in various stages of nonclinical and clinical development has been increasing, pharmaceutical companies have been exploring diverse approaches to understanding the disposition of ADCs. To identify the key absorption, distribution, metabolism, and excretion (ADME) issues worth examining when developing an ADC and to find optimal scientifically based approaches to evaluate ADC ADME, the International Consortium for Innovation and Quality in Pharmaceutical Development launched an ADC ADME working group in early 2014. This white paper contains observations from the working group and provides an initial framework on issues and approaches to consider when evaluating the ADME of ADCs.


Subject(s)
Antibodies, Monoclonal/metabolism , Immunoconjugates/metabolism , Pharmaceutical Preparations/metabolism , Animals , Drug Industry/methods , Humans
20.
Drug Metab Dispos ; 43(12): 1882-90, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26354950

ABSTRACT

Follistatin 315 heparan sulfate-binding deficient mutant human IgG4 Fc fusion (FST-ΔHBS-Fc) is a follistatin (FST) based Fc fusion protein currently being developed as a novel therapy for several potential indications, including muscle wasting. Previous assessments of the pharmacokinetics and therapeutic activity of FST-ΔHBS-Fc have shown a close association of the exposure-response relationship. The current work builds upon these initial studies by investigating the glycosylation characteristics of FST-ΔHBS-Fc after recombinant expression and its impact on the pharmacokinetics in mice and Cynomolgus monkeys. The data presented indicate that FST-ΔHBS-Fc is heterogeneously glycosylated at the three putative sites in FST when recombinantly expressed in stably transfected Chinese hamster ovary cells. Such carbohydrate heterogeneity, especially with regards to sialic acid incorporation, directly results in sugar-dependent clearance in both mice and Cynomolgus monkeys. Examination of the pharmacokinetics of FST-ΔHBS-Fc molecules containing variable sialic acid content in asialoglycoprotein receptor 1 (ASPGR-1) knockout mice supports the receptor's role as part of the clearance mechanism of the molecules. Based on the evaluation of several variably sialylated lots of material in pharmacokinetic assessments, we define specifications for average sialic acid incorporation into FST-ΔHBS-Fc that result in limited sugar-mediated clearance. Taken together, these studies highlight the importance of establishing an early understanding of the glycosylation/pharmacokinetic relationships of FST-ΔHBS-Fc, which will provide a basis for future application toward optimal systemic drug delivery and dosing strategies.


Subject(s)
Biological Therapy/trends , Follistatin/chemistry , Follistatin/pharmacokinetics , Animals , CHO Cells , Cricetinae , Cricetulus , Glycosylation , HEK293 Cells , Humans , Macaca fascicularis , Male , Mice , Mice, Knockout , Mice, SCID
SELECTION OF CITATIONS
SEARCH DETAIL
...