Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Front Cell Neurosci ; 16: 926794, 2022.
Article in English | MEDLINE | ID: mdl-35936490

ABSTRACT

Inositol pyrophosphates have been implicated in cellular signaling and membrane trafficking, including synaptic vesicle (SV) recycling. Inositol hexakisphosphate kinases (IP6Ks) and their product, diphosphoinositol pentakisphosphate (PP-IP5 or IP7), directly and indirectly regulate proteins important in vesicle recycling by the activity-dependent bulk endocytosis pathway (ADBE). In the present study, we show that two isoforms, IP6K1 and IP6K3, are expressed in axons. The role of the kinases in SV recycling are investigated using pharmacologic inhibition, shRNA knockdown, and IP6K1 and IP6K3 knockout mice. Live-cell imaging experiments use optical reporters of SV recycling based on vesicular glutamate transporter isoforms, VGLUT1- and VGLUT2-pHluorins (pH), which recycle differently. VGLUT1-pH recycles by classical AP-2 dependent endocytosis under moderate stimulation conditions, while VGLUT2-pH recycles using AP-1 and AP-3 adaptor proteins as well. Using a short stimulus to release the readily releasable pool (RRP), we show that IP6K1 KO increases exocytosis of both VGLUT1-and VGLUT2-pH, while IP6K3 KO decreases the amount of both transporters in the RRP. In electrophysiological experiments we measure glutamate signaling with short stimuli and under the intense stimulation conditions that trigger bulk endocytosis. IP6K1 KO increases synaptic facilitation and IP6K3 KO decreases facilitation compared to wild type in CA1 hippocampal Schaffer collateral synapses. After intense stimulation, the rate of endocytosis of VGLUT2-pH, but not VGLUT1-pH, is increased by knockout, knockdown, and pharmacologic inhibition of IP6Ks. Thus IP6Ks differentially affect the endocytosis of two SV protein cargos that use different endocytic pathways. However, while IP6K1 KO and IP6K3 KO exert similar effects on endocytosis after stimulation, the isoforms exert different effects on exocytosis earlier in the stimulus and on the early phase of glutamate release. Taken together, the data indicate a role for IP6Ks both in exocytosis early in the stimulation period and in endocytosis, particularly under conditions that may utilize AP-1/3 adaptors.

2.
Cereb Cortex ; 32(20): 4397-4421, 2022 10 08.
Article in English | MEDLINE | ID: mdl-35076711

ABSTRACT

A consensus is yet to be reached regarding the exact prevalence of epileptic seizures or epilepsy in multiple sclerosis (MS). In addition, the underlying pathophysiological basis of the reciprocal interaction among neuroinflammation, demyelination, and epilepsy remains unclear. Therefore, a better understanding of cellular and network mechanisms linking these pathologies is needed. Cuprizone-induced general demyelination in rodents is a valuable model for studying MS pathologies. Here, we studied the relationship among epileptic activity, loss of myelin, and pro-inflammatory cytokines by inducing acute, generalized demyelination in a genetic mouse model of human absence epilepsy, C3H/HeJ mice. Both cellular and network mechanisms were studied using in vivo and in vitro electrophysiological techniques. We found that acute, generalized demyelination in C3H/HeJ mice resulted in a lower number of spike-wave discharges, increased cortical theta oscillations, and reduction of slow rhythmic intrathalamic burst activity. In addition, generalized demyelination resulted in a significant reduction in the amplitude of the hyperpolarization-activated inward current (Ih) in thalamic relay cells, which was accompanied by lower surface expression of hyperpolarization-activated, cyclic nucleotide-gated channels, and the phosphorylated form of TRIP8b (pS237-TRIP8b). We suggest that demyelination-related changes in thalamic Ih may be one of the factors defining the prevalence of seizures in MS.


Subject(s)
Demyelinating Diseases , Epilepsy, Absence , Animals , Cerebral Cortex/physiology , Cuprizone/metabolism , Cuprizone/toxicity , Cytokines/metabolism , Demyelinating Diseases/chemically induced , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism , Mice , Mice, Inbred C3H , Neurons/physiology , Nucleotides, Cyclic/metabolism , Seizures , Thalamus/physiology
3.
Cereb Cortex Commun ; 2(2): tgab023, 2021.
Article in English | MEDLINE | ID: mdl-34296168

ABSTRACT

Resting state-fMRI was performed to explore brain networks in Genetic Absence Epilepsy Rats from Strasbourg and in nonepileptic controls (NEC) during monitoring of the brain state by simultaneous optical Ca2+-recordings. Graph theoretical analysis allowed for the identification of acute and chronic network changes and revealed preserved small world topology before and after seizure onset. The most prominent acute change in network organization during seizures was the segregation of cortical regions from the remaining brain. Stronger connections between thalamic with limbic regions compared with preseizure state indicated network regularization during seizures. When comparing between strains, intrathalamic connections were prominent in NEC, on local level represented by higher thalamic strengths and hub scores. Subtle differences were observed for retrosplenial cortex (RS), forming more connections beyond cortex in epileptic rats, and showing a tendency to lateralization during seizures. A potential role of RS as hub between subcortical and cortical regions in epilepsy was supported by increased numbers of parvalbumin-positive (PV+) interneurons together with enhanced inhibitory synaptic activity and neuronal excitability in pyramidal neurons. By combining multimodal fMRI data, graph theoretical methods, and electrophysiological recordings, we identified the RS as promising target for modulation of seizure activity and/or comorbidities.

4.
Commun Biol ; 2: 420, 2019.
Article in English | MEDLINE | ID: mdl-31754650

ABSTRACT

N-methyl-D-aspartate receptors (NMDARs), especially GluN2B-containing NMDARs, are associated with neurodegenerative diseases like Parkinson, Alzheimer and Huntington based on their high Ca2+ conductivity. Overactivation leads to high intracellular Ca2+ concentrations and cell death rendering GluN2B-selective inhibitors as promising drug candidates. Ifenprodil represents the first highly potent prototypical, subtype-selective inhibitor of GluN2B-containing NMDARs. However, activity of ifenprodil on serotonergic, adrenergic and sigma receptors limits its therapeutic use. Structural reorganization of the ifenprodil scaffold to obtain 3-benzazepines retained inhibitory GluN2B activity but decreased the affinity at the mentioned non-NMDARs. While scaffold optimization improves the selectivity, the molecular inhibitory mechanism of these compounds is still not known. Here, we show a common inhibitory mechanism of ifenprodil and the related 3-benzazepines by mutational modifications of the receptor binding site, chemical modifications of the 3-benzazepine scaffold and subsequent in silico simulation of the inhibitory mechanism.


Subject(s)
Drug Discovery , Models, Molecular , Receptors, N-Methyl-D-Aspartate/chemistry , Benzazepines/chemistry , Benzazepines/pharmacology , Binding Sites , Dose-Response Relationship, Drug , Drug Discovery/methods , Humans , Hydrogen Bonding , Ligands , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Protein Binding , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Structure-Activity Relationship
5.
Neuroimage ; 195: 89-103, 2019 07 15.
Article in English | MEDLINE | ID: mdl-30930308

ABSTRACT

Most studies involving BOLD fMRI in basic neuroscience research are conducted with anesthetized animals. This study investigates neural and hemodynamic activity through a combination of experiments comprising BOLD fMRI, optical calcium recordings and ASL in vivo. Patch clamp experiments of neurons were conducted to evaluate electrophysiological correlates of neural activity in vitro. Various anesthetic conditions embracing numerous anesthetic depths evoked by different concentrations of isoflurane (ISO) and different degrees of hypercapnia under a constant stimulus were investigated. We observed that different anesthetic conditions had major impact on the results obtained, particularly that anesthesia could cause a massive divergence of different experimental modalities. In ventilated animals, robust BOLD responses were detectable even with relatively deep anesthesia, while in non-ventilated animals, BOLD responses were not detectable under these conditions. This was most likely due to hypercapnia caused by respiratory depression, as in ventilated animals administered CO2 had the same effect. This observation agreed with measurements of perfusion, which showed that inhaled CO2 increased perfusion significantly, while ISO did not. In optical calcium measurements, higher concentrations of ISO decreased spontaneous neural activity, but not stimulus-evoked responses. This observation was explained by a generally lower excitability of neurons under ISO, which suppressed spontaneous activity, and consequently left more neurons available to fire synchronously in response to a stimulus. Interpreting this phenomenon as an integrated signal of independent single neurons was supported by patch clamp experiments as the number of action potentials (APs) per stimulus was decreased by addition of CO2. Addition of ISO on the other hand had no significant effect. Our results provide an explanation on the cellular level for anesthesia-dependent observations in previous studies of task-induced BOLD and resting state connectivity. They further inform selection of the adequate anesthetic regimen for a given combination of modalities.


Subject(s)
Anesthetics, Inhalation/pharmacology , Brain/drug effects , Isoflurane/pharmacology , Magnetic Resonance Imaging , Animals , Female , Hypercapnia/physiopathology , Magnetic Resonance Imaging/methods , Models, Animal , Neurons/drug effects , Rats , Rats, Inbred F344 , Respiration, Artificial/methods
6.
Front Cell Neurosci ; 12: 369, 2018.
Article in English | MEDLINE | ID: mdl-30405353

ABSTRACT

The hyperpolarization-activated inward current, Ih, plays a key role in the generation of rhythmic activities in thalamocortical (TC) relay neurons. Cyclic nucleotides, like 3',5'-cyclic adenosine monophosphate (cAMP), facilitate voltage-dependent activation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels by shifting the activation curve of Ih to more positive values and thereby terminating the rhythmic burst activity. The role of 3',5'-cyclic guanosine monophosphate (cGMP) in modulation of Ih is not well understood. To determine the possible role of the nitric oxide (NO)-sensitive cGMP-forming guanylyl cyclase 2 (NO-GC2) in controlling the thalamic Ih, the voltage-dependency and cGMP/cAMP-sensitivity of Ih was analyzed in TC neurons of the dorsal part of the lateral geniculate nucleus (dLGN) in wild type (WT) and NO-GC2-deficit (NO-GC2-/-) mice. Whole cell voltage clamp recordings in brain slices revealed a more hyperpolarized half maximal activation (V1/2) of Ih in NO-GC2-/- TC neurons compared to WT. Different concentrations of 8-Br-cAMP/8-Br-cGMP induced dose-dependent positive shifts of V1/2 in both strains. Treatment of WT slices with lyase enzyme (adenylyl and guanylyl cyclases) inhibitors (SQ22536 and ODQ) resulted in further hyperpolarized V1/2. Under current clamp conditions NO-GC2-/- neurons exhibited a reduction in the Ih-dependent voltage sag and reduced action potential firing with hyperpolarizing and depolarizing current steps, respectively. Intrathalamic rhythmic bursting activity in brain slices and in a simplified mathematical model of the thalamic network was reduced in the absence of NO-GC2. In freely behaving NO-GC2-/- mice, delta and theta band activity was enhanced during active wakefulness (AW) as well as rapid eye movement (REM) sleep in cortical local field potential (LFP) in comparison to WT. These findings indicate that cGMP facilitates Ih activation and contributes to a tonic activity in TC neurons. On the network level basal cGMP production supports fast rhythmic activity in the cortex.

7.
Front Cell Neurosci ; 12: 393, 2018.
Article in English | MEDLINE | ID: mdl-30455634

ABSTRACT

Both, the anterior bed nucleus of the stria terminalis (BNST) and the neuropeptide Y (NPY) system are involved in shaping fear and defensive responses that adapt the organism to potentially life-threatening conditions. NPY is expressed in the BNST but NPY-expressing neurons in this critical hub in the stress response network have not been addressed before. Therefore, we performed whole-cell patch-clamp recordings in acute slices of anterior BNST from Npy-hrGFP transgenic mice to identify and characterize NPY-expressing neurons. We show that NPY-positive and NPY-negative neurons in anterior BNST match the previous classification scheme of type I (Regular Spiking), type II (Low-Threshold Bursting), and type III (fast Inward Rectifying) cells, although the proportion of these physiological phenotypes was similar within both neuronal subpopulations. However, NPY-positive and NPY-negative neurons possessed distinct intrinsic electrophysiological properties. NPY-positive neurons displayed higher input resistance and lower membrane capacitance, corresponding to small cell bodies and shorter less ramified dendrites, as compared to their NPY-negative counterparts. Furthermore, NPY-positive neurons generated higher frequent series of action potentials upon membrane depolarization and displayed significantly lower GABAA receptor-mediated synaptic responsiveness during evoked, spontaneous, and elementary synaptic activity. Taken together, these properties indicate an overall state of high excitability in NPY-positive neurons in anterior BNST. In view of the role of the anterior BNST in anxiety- and stress-related behaviors, these findings suggest a scenario where NPY-positive neurons are preferentially active and responsive to afferent inputs, thereby contributing to adaptation of the organism to stressful environmental encounters.

8.
Brain Struct Funct ; 223(3): 1537-1564, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29168010

ABSTRACT

Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels have important functions in controlling neuronal excitability and generating rhythmic oscillatory activity. The role of tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) in regulation of hyperpolarization-activated inward current, I h, in the thalamocortical system and its functional relevance for the physiological thalamocortical oscillations were investigated. A significant decrease in I h current density, in both thalamocortical relay (TC) and cortical pyramidal neurons was found in TRIP8b-deficient mice (TRIP8b-/-). In addition basal cAMP levels in the brain were found to be decreased while the availability of the fast transient A-type K+ current, I A, in TC neurons was increased. These changes were associated with alterations in intrinsic properties and firing patterns of TC neurons, as well as intrathalamic and thalamocortical network oscillations, revealing a significant increase in slow oscillations in the delta frequency range (0.5-4 Hz) during episodes of active-wakefulness. In addition, absence of TRIP8b suppresses the normal desynchronization response of the EEG during the switch from slow-wave sleep to wakefulness. It is concluded that TRIP8b is necessary for the modulation of physiological thalamocortical oscillations due to its direct effect on HCN channel expression in thalamus and cortex and that mechanisms related to reduced cAMP signaling may contribute to the present findings.


Subject(s)
Cerebral Cortex/physiology , Membrane Proteins/metabolism , Neural Pathways/physiology , Peroxins/metabolism , Thalamus/physiology , Action Potentials/genetics , Adenine/analogs & derivatives , Adenine/pharmacology , Adenylyl Cyclase Inhibitors/pharmacology , Animals , Cardiovascular Agents/pharmacology , Cerebral Cortex/cytology , Cyclic AMP/pharmacology , Cyclic GMP/analogs & derivatives , Cyclic GMP/pharmacology , Female , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/physiology , Male , Membrane Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Neurological , Peroxins/genetics , Pyrimidines/pharmacology , Sodium Channel Blockers/pharmacology , Tetrodotoxin/pharmacology , Thionucleotides/pharmacology
9.
J Physiol ; 595(17): 5875-5893, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28714121

ABSTRACT

KEY POINTS: The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. ABSTRACT: The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein ßγ subunit (Gßγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cß as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.


Subject(s)
Acetylcholine/physiology , Interneurons/physiology , Nerve Tissue Proteins/physiology , Potassium Channels, Tandem Pore Domain/physiology , Thalamus/physiology , src-Family Kinases/physiology , Animals , CSK Tyrosine-Protein Kinase , Female , GTP-Binding Protein beta Subunits/physiology , GTP-Binding Protein gamma Subunits/physiology , Male , Mice, Transgenic , Muscarinic Agonists/pharmacology , Nerve Tissue Proteins/genetics , Oxotremorine/analogs & derivatives , Oxotremorine/pharmacology , Patch-Clamp Techniques , Phosphatidylinositol 3-Kinases/physiology , Potassium Channels, Tandem Pore Domain/genetics , Receptors, Muscarinic/physiology , Signal Transduction , Up-Regulation
10.
Transl Neurosci ; 7(1): 62-70, 2016.
Article in English | MEDLINE | ID: mdl-28123823

ABSTRACT

OBJECTIVES: Sleep problems represent a worldwide health concern but their prevalence and impacts are unknown in most non-European/North American countries. This study aimed to evaluate sleep-wake patterns, sleep quality and potential correlates of poor sleep in a sample of the urban Georgian population. METHODS: Analyses are based on 395 volunteers (267 females, 128 males, aged 20-60 years) of the Georgia Somnus Study. Subjects completed the Pittsburgh Sleep Quality Index (PSQI) and the Beck Depression Inventory-Short Form. Sociodemographic information and self-reported height and weight were collected. RESULTS: 43% of subjects had poor sleep quality (PSQI > 5). Further, 41% had low sleep efficiency, 27.6% slept 6 hours or less, 32.4% went to bed after midnight, 27.6% snored, 10.6% were taking sleep medication, and 26.8% had sleep maintenance problems as occurring three or more times a week. The latest bedtime, rise time, and gender effect on these variables were found in the age group 20-29 years. PSQI global score showed a significant age but not gender difference. The economic status and the depression score were two significant predictors of sleep quality. CONCLUSIONS: Poor sleep quality has a high prevalence and is strongly linked to the economic status. Study findings call for a global assessment of sleep problems in countries where sleep disturbances represent an insufficiently recognized public health issue.

SELECTION OF CITATIONS
SEARCH DETAIL
...