Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 14(32): 11457-67, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22801490

ABSTRACT

The thermal stability of inverse micelle prepared Pt nanoparticles (NPs) supported on nanocrystalline γ-Al(2)O(3) was monitored in situ under different chemical environments (H(2), O(2), H(2)O) via extended X-ray absorption fine-structure spectroscopy (EXAFS) and ex situ via scanning transmission electron microscopy (STEM). Drastic differences in the stability of identically synthesized NP samples were observed upon exposure to two different pre-treatments. In particular, exposure to O(2) at 400 °C before high temperature annealing in H(2) (800 °C) was found to result in the stabilization of the inverse micelle prepared Pt NPs, reaching a maximum overall size after moderate coarsening of ∼1 nm. Interestingly, when an analogous sample was pre-treated in H(2) at ∼400 °C, a final size of ∼5 nm was reached at 800 °C. The beneficial role of oxygen in the stabilization of small Pt NPs was also observed in situ during annealing treatments in O(2) at 450 °C for several hours. In particular, while NPs of 0.5 ± 0.1 nm initial average size did not display any significant sintering (0.6 ± 0.2 nm final size), an analogous thermal treatment in hydrogen leads to NP coarsening (1.2 ± 0.3 nm). The same sample pre-dosed and annealed in an atmosphere containing water only displayed moderate sintering (0.8 ± 0.3 nm). Our data suggest that PtO(x) species, possibly modifying the NP/support interface, play a role in the stabilization of small Pt NPs. Our study reveals the enhanced thermal stability of inverse micelle prepared Pt NPs and the importance of the sample pre-treatment and annealing environment in the minimization of undesired sintering processes affecting the catalytic performance of nanosized particles.

2.
J Phys Chem B ; 109(6): 2387-91, 2005 Feb 17.
Article in English | MEDLINE | ID: mdl-16851233

ABSTRACT

An essential property of combustion catalysts is long-term (>8000 h) stability at high temperatures in an environment (approximately 1 atm of both oxygen and water vapor) that aggressively promotes sintering of the supporting oxide and coarsening of the active component. Extrapolation of accelerated coarsening rate measurements, determined from shorter exposures at higher temperatures, can be made with more confidence if the physical processes of the coarsening and sintering processes were well understood. The current work examines in detail the coarsening of a high-weight-loaded palladium catalyst supported by silica-stabilized alumina at 900 degrees C in such an aggressive environment. The results of this investigation showed that the Pd particle size distribution was consistently log-normal for time periods from 100 to 4000 h, the mean particle growth rate was roughly inverse second-order in mean particle diameter, and the support not only sintered but also underwent phase transformation. The results implicate both coalescence and Ostwald ripening as important coarsening processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...