Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
World J Urol ; 42(1): 415, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012490

ABSTRACT

PURPOSE: To experimentally measure renal pelvis pressure (PRP) in an ureteroscopic model when applying a simple hydrodynamic principle, the siphoning effect. METHODS: A 9.5Fr disposable ureteroscope was inserted into a silicone kidney-ureter model with its tip positioned at the renal pelvis. Irrigation was delivered through the ureteroscope at 100 cm above the renal pelvis. A Y-shaped adapter was fitted onto the model's renal pelvis port, accommodating a pressure sensor and a 4 Fr ureteral access catheter (UAC) through each limb. The drainage flowrate through the UAC tip was measured for 60 s each run. The distal tip of the UAC was placed at various heights below or above the center of the renal pelvis to create a siphoning effect. All trials were performed in triplicate for two lengths of 4Fr UACs: 100 cm and 70 cm (modified from 100 cm). RESULTS: PRP was linearly dependent on the height difference from the center of the renal pelvis to the UAC tip for both tested UAC lengths. In our experimental setting, PRP can be reduced by 10 cmH20 simply by lowering the distal tip of a 4 Fr 70 cm UAC positioned alongside the ureteroscope by 19.7 cm. When using a 4 Fr 100 cm UAC, PRP can drop 10 cmH20 by lowering the distal tip of the UAC 23.3 cm below the level of the renal pelvis. CONCLUSION: Implementing the siphoning effect for managing PRP during ureteroscopy could potentially enhance safety and effectiveness.


Subject(s)
Kidney Pelvis , Pressure , Ureter , Ureteroscopy , Ureteroscopy/methods , Ureter/physiology , Humans , Models, Anatomic , Ureteroscopes , In Vitro Techniques
2.
World J Urol ; 42(1): 197, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38530484

ABSTRACT

INTRODUCTION: High fluid temperatures have been seen in both in vitro and in vivo studies with laser lithotripsy, yet the thermal distribution within the renal parenchyma has not been well characterized. Additionally, the heat-sink effect of vascular perfusion remains uncertain. Our objectives were twofold: first, to measure renal tissue temperatures in response to laser activation in a calyx, and second, to assess the effect of vascular perfusion on renal tissue temperatures. METHODS: Ureteroscopy was performed in three porcine subjects with a prototype ureteroscope containing a temperature sensor at its tip. A needle with four thermocouples was introduced percutaneously into a kidney with ultrasound guidance to allow temperature measurement in the renal medulla and cortex. Three trials of laser activation (40W) for 60 s were conducted with an irrigation rate of 8 ml/min at room temperature in each subject. After euthanasia, three trials were repeated without vascular perfusion in each subject. RESULTS: Substantial temperature elevation was observed in the renal medulla with thermal dose in two of nine trials exceeding threshold for tissue injury. The temperature decay time (t½) of the non-perfused trials was longer than in the perfused trials. The ratio of t½ between them was greater in the cortex than the medulla. CONCLUSION: High-power laser settings (40W) can induce potentially injurious temperatures in the in vivo porcine kidney, particularly in the medullary region adjacent to the collecting system. Additionally, the influence of vascular perfusion in mitigating thermal risk in this susceptible area appears to be limited.


Subject(s)
Lasers, Solid-State , Lithotripsy, Laser , Swine , Animals , Humans , Temperature , Hot Temperature , Kidney , Ureteroscopy , Perfusion
3.
World J Urol ; 41(11): 3181-3185, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37777598

ABSTRACT

INTRODUCTION: High irrigation rates are commonly used during ureteroscopy and can increase intrarenal pressure (IRP) substantially. Concerns have been raised that elevated IRP may diminish renal blood flow (RBF) and perfusion of the kidney. Our objective was to investigate the real-time changes in RBF while increasing IRP during Ureteroscopy (URS) in an in-vivo porcine model. METHODS: Four renal units in two porcine subjects were used in this study, three experimental units and one control. For the experimental units, RBF was measured by placing an ultrasonic flow cuff around the renal artery, while performing ureteroscopy in the same kidney using a prototype ureteroscope with a pressure sensor at its tip. Irrigation was cycled between two rates to achieve targeted IRPs of 30 mmHg and 100 mmHg. A control data set was obtained by placing the ultrasonic flow cuff on the contralateral renal artery while performing ipsilateral URS. RESULTS: At high IRP, RBF was reduced in all three experimental trials by 10-20% but not in the control trial. The percentage change in RBF due to alteration in IRP was internally consistent in each porcine renal unit and independent of slower systemic variation in RBF encountered in both the experimental and control units. CONCLUSION: RBF decreased 10-20% when IRP was increased from 30 to 100 mmHg during ureteroscopy in an in-vivo porcine model. While this reduction in RBF is unlikely to have an appreciable effect on tissue oxygenation, it may impact heat-sink capacity in vulnerable regions of the kidney.


Subject(s)
Kidney , Ureteroscopy , Humans , Animals , Swine , Pressure , Kidney/blood supply , Renal Circulation , Ureteroscopes
4.
Urolithiasis ; 51(1): 98, 2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37515665

ABSTRACT

To maintain visualization and control temperature elevation during ureteroscopy, higher irrigation rates are necessary, but this can increase intrarenal pressure (IRP) and lead to adverse effects like sepsis. The IRP is also dependent on outflow resistance but this has not been quantitatively evaluated in a biological system. In this study, we sought to characterize the IRP as a function of irrigation rate in an in vivo porcine model at different outflow resistances. Ureteroscopy was performed in a porcine model with a 9.5 Fr prototype ureteroscope containing a pressure sensor. A modified ureteral access sheath (UAS) (11/13 Fr, 36 cm) was configured to adjust outflow resistance. IRP-irrigation rate curves were generated at four different outlet resistances representing different outflow scenarios. At lower irrigation rates, the pressure change in response to increased irrigation was gradual and non-linear, likely reflecting a "compliant" phase of the renal collecting system. Once IRP reached the range of 35-50 cm H2O, the pressure increased in a linear fashion with irrigation rate, suggesting that the distensibility of the collecting system had become saturated. The relationship between IRP and irrigation rate becomes linear during in vivo porcine studies once the initial compliance of the system is saturated. IRP is more sensitive to changes in irrigation rate in systems with higher outflow resistance. The modified UAS is a novel research tool which allows variance of outflow resistance to mimic different clinical scenarios. Knowledge of outflow resistance may simplify the decision to use an UAS.


Subject(s)
Ureter , Ureteroscopy , Swine , Animals , Ureteroscopy/adverse effects , Ureteroscopes/adverse effects , Pressure , Fever , Therapeutic Irrigation/adverse effects
5.
Urology ; 180: 81-85, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37482102

ABSTRACT

OBJECTIVE: To map thermal safety boundaries during ureteroscopy (URS) with laser activation in two in vivo porcine subjects to better understand the interplay between laser power, irrigation rate, and fluid temperature in the collecting system. METHODS: URS was performed in two in vivo porcine subjects with a prototype ureteroscope containing a thermocouple at its tip. Up to 6 trials of 60 seconds laser activation were carried out at each selected power setting and irrigation rate. Thermal dose was calculated for each trial, and laser power-irrigation rate parameter pairs were categorized based on number of trials that exceeded a thermal dose of 120 equivalent minutes. RESULTS: The collecting fluid temperature was increased with greater laser power and slower irrigation rate. In the first porcine subject, 25 W of laser power could safely be applied if irrigation was at least 15 mL/min, and 48 W with at least 30 mL/min. Intermediate values followed a linear curve between these bounds. For the second subject, where the calyx appeared larger, 15 W laser power required 9 mL/min irrigation, 48 W required 24 mL/min, and intermediate points also followed a near-linear curve. CONCLUSION: This study validates previous bench research and provides a conceptual framework for selection of safe laser lithotripsy settings and irrigation rates during URS with laser lithotripsy. Additionally, it provides insight and guidance for future development of thermal mitigation strategies and devices.

6.
World J Urol ; 41(3): 873-878, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36749395

ABSTRACT

PURPOSE: Since renal pelvis pressure is directly related to irrigation flowrate and outflow resistance, knowledge of outflow resistance associated with commonly used drainage devices could help guide the selection of the type and size of ureteral access sheath or catheter for individual ureteroscopic cases. This study aims to quantitatively measure outflow resistance for different drainage devices utilized during ureteroscopy. METHODS: With measured irrigation flowrate and renal pelvis pressure, outflow resistance was calculated using a hydrodynamic formula. After placement of a drainage device into a silicone kidney-ureter model, a disposable ureteroscope with a 9.5-Fr outer diameter was inserted with its tip positioned at the renal pelvis. Irrigation was delivered through the ureteroscope from varying heights above the renal pelvis. Renal pelvis pressure was measured directly from the port of the kidney model using a pressure sensor (Opsens, Canada). Outflow resistance was determined by plotting flowrate versus renal pelvis pressure. All trials were performed in triplicate for each drainage device inserted. RESULTS: Flowrate was linearly dependent on renal pelvis pressure for all drainage devices tested. Outflow resistance values were 0.2, 1.1, 1.4, 3.9, and 6.5 cmH2O/[ml/min] for UAS 13/15 Fr, UAS 11/13 Fr, UAC 6 Fr, UAC 4.8 Fr, and UAC 4.0 Fr, respectively, across the range of commonly used irrigation flowrates. CONCLUSIONS: In this study, outflow resistance of different ureteral drainage devices was quantitatively measured. This knowledge can be useful when selecting which type and size of drainage device to insert to maintain safe renal pelvis pressure during ureteroscopy.


Subject(s)
Ureter , Humans , Ureter/surgery , Ureteroscopy , Pressure , Kidney Pelvis/surgery , Ureteroscopes , Drainage
7.
J Endourol ; 36(12): 1593-1598, 2022 12.
Article in English | MEDLINE | ID: mdl-35904397

ABSTRACT

Introduction: Ureteral thermal injury has been reported in patients following ureteroscopy with laser lithotripsy due to overheating of fluid within the ureter. Proper understanding of this risk necessitates knowing the volume of fluid available to absorb laser energy. This can be approximated as the volume of fluid that mixes during laser activation, since energy transfer through fluid is dominated by convection. Objectives of this study were to determine the volume of fluid that mixes during laser activation at different irrigation rates and to characterize the temporal/spatial temperature distribution in a model ureter. Methods: The model ureter consisted of a plastic tube-160 mm length and 5.3 mm inner diameter. Irrigation was first applied with clear, then dyed, deionized water at rates from 8 to 40 mL/min. The laser was activated at 20 W (0.5 J/40 Hz). The distances the dyed fluid propagated were measured and volumes calculated. Temperatures were recorded from six thermocouples-five embedded within the tube and one affixed to the ureteroscope. Thermal dose was calculated using the Dewey and Sapareto methodology. Results: The volume of total fluid mixing in the model ureter was ≤1.26 ± 0.10 cm3, consistent with a sharp temperature increase after laser activation from -5 to 25 mm from the ureteroscope tip. With irrigation rates ≤12 mL/min, calculated thermal dose within the model ureter exceeded the threshold of tissue injury and extended greater distances along the ureter with lower irrigation rates. Conclusion: The volume of total fluid mixing within the model ureter was found to be small thus conferring a greater risk of ureteral thermal injury. A thermocouple positioned near the tip of the ureteroscope reasonably approximates temperature in front of the ureteroscope. Until temperature sensors are incorporated into ureteroscopic systems, laser power settings should be carefully selected to minimize risk of ureteral thermal injury.


Subject(s)
Hydrodynamics , Lasers , Humans
8.
J Endourol ; 36(12): 1607-1612, 2022 12.
Article in English | MEDLINE | ID: mdl-35904398

ABSTRACT

Introduction: Laser lithotripsy can cause excessive heating of fluid within the collecting system and lead to tissue damage. To better understand this effect, it is important to determine the percentage of applied laser energy that is converted to heat and the percentage used for stone ablation. Our objective was to calculate the percentage of laser energy used for stone ablation based on the difference in fluid temperature measured in an in vitro model when the laser was activated without and with stone ablation. Methods: Flat BegoStone disks (15:5) were submerged in 10 mL of deionized water at the bottom of a vacuum evacuated double-walled glass Dewar. A Moses 200 D/F/L laser fiber was positioned above the surface of the stone at a distance of 3.5 mm for control (no stone ablation) or 0.5 mm for experimental (ablation) trials. The laser was activated and scanned at 3 mm/second across the stone in a preprogrammed pattern for 30 seconds at 2.5 W (0.5 J × 5 Hz) for both short-pulse (SP) and Moses distance (MD) modes. Temperature of the fluid was recorded using two thermocouples once per second. Results: Control trials produced no stone ablation, while experimental trials produced a staccato groove in the stone surface, simulating efficient lithotripsy. The mean temperature increase for SP was 1.08°C ± 0.04°C for control trials and 0.98°C ± 0.03°C for experimental trials, yielding a mean temperature difference of 0.10°C ± 0.06°C (p = 0.0005). With MD, the mean temperature increase for control trials was 1.03°C ± 0.01°C and for experimental trials 0.99°C ± 0.06°C, yielding a smaller mean temperature difference of 0.04°C ± 0.06°C (p = 0.09). Conclusions: Even under conditions of energy-efficient stone ablation, the majority of applied laser energy (91%-96%) was converted to heat.


Subject(s)
Lasers , Humans
9.
World J Urol ; 40(6): 1575-1580, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35220474

ABSTRACT

PURPOSE: High-power laser lithotripsy can elevate temperature within the urinary collecting system and increase risk of thermal injury. Temperature elevation is dependent on power settings and operator duty cycle (ODC)-the percentage of time the laser pedal is depressed. The objective of this study was to quantify temperature and thermal dose resulting from laser activation at different ODC in an in-vitro model. METHODS: Holmium laser energy (1800 J) was delivered at 30 W (0.5 J × 60 Hz) to a fluid filled glass bulb. Room temperature irrigation was applied at 8 ml/min. ODC was evaluated in 10% increments from 50-100%. Bulb fluid temperature was recorded and thermal dose calculated. Time to reach threshold of thermal injury and maximal allowable energy were also determined at each ODC. RESULTS: Upon laser activation, there was an immediate rise in fluid temperature with a "saw-tooth" oscillation superimposed on the curves for 50-90% ODC corresponding to periodic activation of the laser. Higher ODC resulted in greater maximum temperature and thermal dose, with ODC ≥ 70% exceeding threshold. Use of 50% compared to 60% ODC resulted in a tenfold increase in time required to reach threshold of thermal injury and an eightfold increase in maximal allowable energy. CONCLUSIONS: Laser activation at higher ODC produced greater fluid temperature and thermal dose. Time to threshold of thermal injury and maximal allowable energy were dramatically higher for 50% compared to 60% ODC at high-power settings. Proper management of laser ODC can enhance patient safety and optimize stone treatment.


Subject(s)
Lasers, Solid-State , Lithotripsy, Laser , Fever , Humans , Lasers, Solid-State/therapeutic use , Lithotripsy, Laser/methods , Temperature , Ureteroscopy/methods
10.
J Endourol ; 36(3): 403-409, 2022 03.
Article in English | MEDLINE | ID: mdl-34569294

ABSTRACT

Introduction: Multiple studies have shown significant heating of fluid within the urinary collecting system with high-power laser settings. Elevated fluid temperatures may cause thermal injury and tissue damage unless appropriately mitigated. A previous in vitro study demonstrated that chilled (CH) (4°C) irrigation slowed temperature rise, decreased plateau temperature, and lowered thermal dose during laser activation with high-power settings. We sought to evaluate the thermal effects of CH, room temperature (RT), and warmed (WM) irrigation during ureteroscopy with laser activation in an in vivo porcine model. Materials and Methods: Seven female Yorkshire cross pigs (45-55 kg) were anesthetized and positioned supine. Retrograde ureteroscopy was performed with a thermocouple affixed 5 mm from the distal end of the ureteroscope. In two pigs, a holmium:YAG laser was activated for 60 seconds at irrigation rates of 8, 12, and 15 mL/min with CH, RT, or WM irrigation. In five pigs, core body temperature was recorded for 1 hour with or without continuous CH irrigation at 15 mL/min. Results: At irrigation rates ≥12 mL/min, temperature curves appeared uniformly offset, WM > RT > CH irrigation. The threshold of thermal tissue injury was reached during laser activation for all irrigation temperatures at 8 mL/min. The threshold was not reached with CH irrigation at 12 or 15 mL/min, or with RT irrigation at 15 mL/min. The threshold was exceeded at all irrigation rates with WM irrigation. There was no significant change in core body temperature after delivering CH irrigation at 15 mL/min compared with no irrigation for 60 minutes. Conclusion: Irrigation with CH saline solution during ureteroscopic laser lithotripsy slows temperature rise, lowers peak temperature, and lengthens the time to thermal injury compared with irrigation with RT or WM saline solutions. Core body temperature was not significantly impacted by CH irrigation.


Subject(s)
Burns , Lasers, Solid-State , Lithotripsy, Laser , Animals , Female , Fever , Humans , Lasers, Solid-State/therapeutic use , Saline Solution , Swine , Temperature , Ureteroscopes , Ureteroscopy
11.
J Endourol ; 35(8): 1217-1222, 2021 08.
Article in English | MEDLINE | ID: mdl-33397188

ABSTRACT

Introduction: Characterizing patterns of laser activation is important for assessing thermal dose during laser lithotripsy. The objective of this study was twofold: first, to quantify the range of operator duty cycle (ODC) and pedal activation time during clinical laser lithotripsy procedures, and second, to determine thermal dose in an in vitro caliceal model when 1200 J of energy was applied with different patterns of 50% ODC for 60 seconds. Methods: Data from laser logs of ureteroscopy cases performed over a 3-month period were used to calculate ODC (lasing time/lithotripsy time). Temporal and rolling 1-minute average power tracings were generated for each case. In vitro experiments were conducted using a 21 mm diameter glass bulb in a 37°C water bath, simulating a renal calix. A LithoVue ureteroscope with attached thermocouple was inserted and 8 mL/min irrigation was delivered with a 242 µm laser fiber within the working channel. In total, 1200 J of laser energy was applied in five different patterns at 20 W average power for 60 seconds. Thermal dose was calculated using the Sapareto and Dewey t43 method. Results: A total of 63 clinical cases were included in the analysis. Mean ODC was 32% overall and 63% during the 1-minute of greatest energy delivery. Mean time of pedal activation was 3.6 seconds. In vitro studies revealed longer pedal activation times produced higher peak temperature and thermal dose. Thermal injury threshold was reached in 9 seconds when 40 W was applied at 50% ODC with laser activation patterns of 30 seconds on/off and 15 seconds on/off. Conclusion: ODC was quantified from clinical laser lithotripsy cases: 32% overall and 63% during 1-minute of peak power. Time of pedal activation is an important factor contributing to fluid heating and thermal dose. Awareness of these concepts is necessary to reduce risk of thermal injury during laser lithotripsy procedures.


Subject(s)
Lasers, Solid-State , Lithotripsy, Laser , Humans , Kidney Calices , Temperature , Ureteroscopy/adverse effects
12.
J Endourol ; 35(5): 700-705, 2021 05.
Article in English | MEDLINE | ID: mdl-33176475

ABSTRACT

Introduction: High-power lasers (100-120 W) have widely expanded the available settings for laser lithotripsy and facilitated tailoring of treatment for individual cases. Previous in vitro and in vivo studies have demonstrated that a toxic thermal dose to tissue can result from treatment within a renal calix. The objective of this in vitro study was to compare thermal dose and time with tissue injury threshold when using chilled (CH) irrigation and room temperature (RT) irrigation. Materials and Methods: A glass tube attached to a 19 mm diameter bulb simulating a renal calix was placed in a 37°C water bath. A 242 µm laser fiber was passed through a ureteroscope with its tip in the center of the glass bulb. A wire thermocouple was placed 3 mm proximal to the ureteroscope tip to measure caliceal fluid temperature. RT at 19°C or CH at 1°C irrigation was delivered at 0, 8, 12, 15, or 40 mL/minute. The laser was activated at 0.5 J × 80 Hz (40 W) for 60 seconds. Thermal dose was calculated using the Sapareto and Dewey t43 methodology with thermal dose = 120 equivalent minutes considered the threshold for thermal tissue injury. Results: At each irrigation rate, CH irrigation produced a lower starting temperature, a lower plateau temperature, and less thermal dose compared with RT irrigation. The threshold of thermal injury was reached after 13 seconds of laser activation without irrigation. With 12 mL/minute irrigation, the threshold was reached in 46 seconds with RT irrigation but was not reached with CH irrigation. Conclusion: As higher power laser lithotripsy techniques become further refined, methods to mitigate and control thermal dose are necessary to enhance efficiency. CH irrigation slows temperature rise, decreases plateau temperature, and lowers thermal dose during high-power laser lithotripsy.


Subject(s)
Lasers, Solid-State , Lithotripsy, Laser , Humans , Kidney Calices , Temperature , Ureteroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...