Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Genet ; 53(2): 67-80, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18058103

ABSTRACT

Mycoparasitism by antagonistic fungi involves changes in the biochemistry and physiology of both partners. Analysis of genes that are expressed during mycoparasite-host interaction represents a powerful strategy to obtain insight into the molecular events underlying these changes. The aim of this study is to identify genes whose expression is upregulated when the mycoparasite Stachybotrys elegans is in direct confrontation with its host Rhizoctonia solani. Suppression subtractive hybridization (SSH) was used to create a subtracted cDNA library, and differential screening was applied to identify the over-expressed transcripts. We report the analysis of 2,166 clones, among which 47% were upregulated during mycoparasitism. Two hundred and sixty-one clones were sequenced that corresponded to 94 unique genes. Forty-four of these were identified as novel genes, while the remainder showed similarity to a broad diversity of genes with putative functions related to toxin production, pathogenicity, and metabolism. As a result of mycoparasitism, 15 genes belonged to R. solani among which 9 genes were assigned putative functions. Quantitative RT-PCR was used to examine the upregulation of 12 genes during the course of mycoparasitism. Seven genes showed significant upregulation at least at one-time point during interaction of the mycoparasite with its host. This study describes a first step toward knowledge of S. elegans genome. The results present the useful application of EST analysis on S. elegans and provide preliminary indication of gene expression putatively involved in mycoparasitism.


Subject(s)
Gene Expression Regulation, Fungal/physiology , Host-Parasite Interactions/genetics , RNA, Fungal/analysis , Rhizoctonia , Stachybotrys , Genome, Fungal , Mitosporic Fungi , Nucleic Acid Hybridization , RNA, Messenger , Up-Regulation/genetics
2.
Phytopathology ; 96(10): 1116-23, 2006 Oct.
Article in English | MEDLINE | ID: mdl-18943500

ABSTRACT

ABSTRACT Colletotrichum coccodes is a biocontrol agent of velvetleaf (Abutilon theophrasti), a noxious weed of corn and soybean. Metallothioneins (MTs) and basic region/leucine zipper motif (bZIP) are heavy-metal-binding proteins and transcription factors, respectively, that have been related to several plant processes, including the responses of plants to pathogen attack. Previous investigation of the determinants involved in the velvet-leaf-C. coccodes interaction had shed light on particular plant and fungal genes expressed in this pathosystem. Here, we report on the temporal expression patterns of two distinct types (2 and 3) of MT and bZIP transcription factor genes in velvetleaf leaves following infection with C. coccodes using quantitative reverse-transcription polymerase chain reaction. Gene expression ratios were significantly upregulated 1 day after infection (DAI), a time at which velvetleaf leaves appeared symptomless. At 2 DAI, bZIP and type 3 MT expression ratios dropped to levels significantly lower than those estimated for noninfected plants. Necrotic symptoms appeared 5 DAI and increased with time, during which gene expression levels were maintained either below or at levels observed in the control. These findings indicate that C. coccodes altered the expression of type 2 and 3 MT and bZIP genes. In addition, this is the first report on induction of a type 3 MT in plants in response to a pathogen attack.

SELECTION OF CITATIONS
SEARCH DETAIL
...