Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
medRxiv ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38826310

ABSTRACT

Background: Both short and long sleep durations are adversely associated with numerous chronic conditions, including cardiovascular disease (CVD), diabetes, hypertension, and mortality. The American Academy of Sleep Medicine recommends adults in the United States sleep at least 7 hours and less than 9 hours per night to maintain optimal health. It remains unclear how sleep duration trajectories over time are associated with mortality. Methods: This observational cohort study includes 46,928 Black and White adults (mean age: 53 ± 9 years) who enrolled in the Southern Community Cohort Study between 2002-2009 and completed a follow-up survey in 2008-2013. Participants were categorized into nine sleep duration trajectory categories based on the reported average sleep duration between study enrollment and at follow-up. Participant vital status and date and cause of death were ascertained via linkage to the National Death Index through 2022. Cox regression analysis was performed to estimate hazard ratios (HR) and 95% confidence intervals (CI) for the association between sleep duration trajectory and all-cause and cause-specific mortality (CVD, cancer, and neurodegenerative disease) after adjustment for sociodemographic characteristics, health behaviors, and clinical factors. Results: During a median 12.6 years of follow-up, we documented 13,579 deaths, including 4,135 from CVD, 3,067 from cancer, and 544 from neurodegenerative diseases. Compared to the optimal sleep duration trajectory (maintaining 7-9 hours), all sub-optimal trajectories were associated with significant 6 to 33% greater risk of all-cause mortality in fully adjusted models. Compared to the optimal sleep trajectory, three of the sub-optimal trajectories were associated with increased CVD mortality, with HRs ranging from 1.20 to 1.34. The short-long trajectory was associated with the greatest risk of all-cause mortality (HR:1.33; 95%CI: 1.21, 1.46) and the long-short trajectory was associated with the greatest CVD mortality risk (HR:1.34; 95%CI: 1.10, 1.65). The healthy-long trajectory was associated with the greatest risk of cancer mortality (HR: 1.19; 95%CI:1.00, 1.41). None of the sub-optimal trajectories was associated with neurodegenerative disease mortality. Conclusions: Suboptimal sleep duration trajectories were associated with increased risk of all-cause mortality as well as CVD mortality. Findings highlight the importance of maintaining healthy sleep duration throughout midlife to reduce mortality risk.

2.
Res Sq ; 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38464207

ABSTRACT

Background: Radiolabeled antibody 131I-omburtamab was administered intraventricularly in patients with leptomeningeal disease under an institutionally approved study (#NCT03275402). Radiation safety precautions were tailored for individual patients, enabling outpatient treatment based on in-depth, evidence-based recommendations for such precautions. The imperative advancement of streamlined therapeutic administration procedures, eliminating the necessity for inpatient isolation and resource-intensive measures, holds pivotal significance. This development bears broader implications for analogous therapies within the pediatric patient demographic. Methods: Intraventricular radioimmunotherapy (RIT) with 925-1850 MBq (25-50 mCi) of 131I-omburtamab was administered via the Ommaya reservoir, in designated rooms within the pediatric ambulatory care center. Dosimeters were provided to staff involved in patient care to evaluate exposure during injection and post-administration. Post-administration exposure rate readings from the patient on contact, at 0.3 m, and at 1 m were taken within the first 30 minutes, and the room was surveyed after patient discharge. Duration of radiation exposure was calculated using standard U.S. Nuclear Regulatory Commission (US NRC) regulatory guidance recommendations combined with mean exposure rates and whole-body clearance estimates. Exposure rate measurements and clearance data provided patient-specific precautions for four cohorts by age: < 3 y/o, 3-10 y/o, 10-18 y/o, and 18+. Results: Post-administration exposure rates for patients ranged from 0.16-0.46 µSv/hr/MBq at 1 ft and 0.03-0.08 µSv/hr/MBq at 1 m. Radiation exposure duration ranged from 1-10 days after release for the four evaluated cohorts. Based on the highest measured exposure rates and slowest whole-body clearance, the longest precautions were approximately 78% lower than the regulatory guidance recommendations. Radiation exposure to staff associated with 131I-omburtamab per administration was substantially below the annual regulatory threshold for individual exposure monitoring. Conclusion: 131I-omburtamab can be administered on an outpatient basis, using appropriate patient-based radiation safety precautions that employ patient-specific exposure rate and biological clearance parameters. This trial is registered with the National Library of Medicine's ClinicalTrials.gov. The registration number is NCT03275402, and it was registered on 7 September 2017. The web link is included here. https://clinicaltrials.gov/study/NCT03275402.

3.
Z Med Phys ; 34(1): 100-110, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37537100

ABSTRACT

BACKGROUND: Radiation is one of the most important stressors related to missions in space beyond Earth's orbit. Epidemiologic studies of exposed workers have reported elevated rates of Parkinson's disease. The importance of cognitive dysfunction related to low-dose rate radiation in humans is not defined. A meta-analysis was conducted of six cohorts in the Million Person Study (MPS) of low-dose health effects to learn whether there is consistent evidence that Parkinson's disease is associated with radiation dose to brain. MATERIALS AND METHODS: The MPS evaluates all causes of death among U.S. radiation workers and veterans, including Parkinson's disease. Systematic and consistent methods are applied to study all categories of workers including medical radiation workers, industrial radiographers, nuclear power plant workers, atomic veterans, and Manhattan Projects workers at the Los Alamos National Laboratory and at Rocky Flats. Consistent methods for all cohorts are used to estimate organ-specific doses and to obtain vital status and cause of death. RESULTS: The meta-analysis include 6 cohorts within the MPS, consisting of 517,608 workers and 17,219,001 person-years of observation. The mean dose to brain ranged from 6.9 to 47.6 mGy and the maximum dose from 0.76 to 2.7 Gy. Five of the 6 cohorts revealed positive associations with Parkinson's disease. The overall summary estimate from the meta-analysis was statistically significant based on 1573 deaths due to Parkinson's disease. The summary excess relative risk at 100 mGy was 0.17 (95% CI: 0.05; 0.29). CONCLUSIONS: Parkinson's disease was positively associated with radiation in the MPS cohorts indicating the need for careful evaluation as to causality in other studies, delineation of possible mechanisms, and assessing possible implications for space travel as well as radiation protection guidance for terrestrial workers.


Subject(s)
Occupational Exposure , Parkinson Disease , Radiation Protection , Veterans , Humans , Moon , Occupational Exposure/adverse effects , Radiation Protection/methods
4.
Radiology ; 309(2): e222590, 2023 11.
Article in English | MEDLINE | ID: mdl-37962507

ABSTRACT

Because ionizing radiation is widely used in medical imaging and in military, industry, and commercial applications, programmatic management and advancement in knowledge is needed, especially related to the health effects of low-dose radiation. The U.S. Congress in partnership with the U.S. Department of Energy called on the National Academies of Sciences, Engineering, and Medicine (NASEM) to develop a long-term strategic and prioritized agenda for low-dose radiation research. Low doses were defined as dose amounts less than 100 mGy or low-dose rates less than 5 mGy per hour. The 2022 NASEM report was divided into sections detailing the low-dose radiation exposure and health effects, scientific basis for radiation protection, status of low-dose radiation research, a prioritized radiation research agenda, and essential components of a low-dose radiation research program, including resources needed and recommendations for financial recourse. The purpose of this review is to summarize this report and examine the recommendations to assess how these pertain to the practice of radiology and medicine.


Subject(s)
Radiation Protection , Radiology , Humans , Radiography , Industry
5.
Radiat Res ; 200(4): 331-339, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37590492

ABSTRACT

Over 4 million survivors of breast cancer live in the United States, 35% of whom were treated before 2009. Approximately half of patients with breast cancer receive radiation therapy, which exposes the untreated contralateral breast to radiation and increases the risk of a subsequent contralateral breast cancer (CBC). Radiation oncology has strived to reduce unwanted radiation dose, but it is unknown whether a corresponding decline in actual dose received to the untreated contralateral breast has occurred. The purpose of this study was to evaluate trends in unwanted contralateral breast radiation dose to inform risk assessment of second primary cancer in the contralateral breast for long-term survivors of breast cancer. Individually estimated radiation absorbed doses to the four quadrants and areola central area of the contralateral breast were estimated for 2,132 women treated with radiation therapy for local/regional breast cancers at age <55 years diagnosed between 1985 and 2008. The two inner quadrant doses and two outer quadrant doses were averaged. Trends in dose to each of the three areas of the contralateral breast were evaluated in multivariable models. The population impact of reducing contralateral breast dose on the incidence of radiation-associated CBC was assessed by estimating population attributable risk fraction (PAR) in a multivariable model. The median dose to the inner quadrants of the contralateral breast was 1.70 Gy; to the areola, 1.20 Gy; and to the outer quadrants, 0.72 Gy. Ninety-two percent of patients received ≥1 Gy to the inner quadrants. For each calendar year of diagnosis, dose declined significantly for each location, most rapidly for the inner quadrants (0.04 Gy/year). Declines in dose were similar across subgroups defined by age at diagnosis and body mass index. The PAR for CBC due to radiation exposure >1 Gy for women <40 years of age was 17%. Radiation dose-reduction measures have reduced dose to the contralateral breast during breast radiation therapy. Reducing the dose to the contralateral breast to <1 Gy could prevent an estimated 17% of subsequent radiation-associated CBCs for women treated under 40 years of age. These dose estimates inform CBC surveillance for the growing number of breast cancer survivors who received radiation therapy as young women in recent decades. Continued reductions in dose to the contralateral breast could further reduce the incidence of radiation-associated CBC.


Subject(s)
Breast Neoplasms , Neoplasms, Radiation-Induced , Neoplasms, Second Primary , Female , Humans , United States , Middle Aged , Breast Neoplasms/radiotherapy , Breast Neoplasms/epidemiology , Neoplasms, Radiation-Induced/epidemiology , Neoplasms, Radiation-Induced/etiology , Risk Factors , Neoplasms, Second Primary/etiology , Neoplasms, Second Primary/complications , Radiation Dosage
6.
J Radiol Prot ; 43(1)2023 02 15.
Article in English | MEDLINE | ID: mdl-36626823

ABSTRACT

Tennessee Eastman Corporation workers were exposed to uranium dust resulting in high-linear energy transfer (LET) irradiation to lung tissue. In this work, radiation lung doses were reconstructed for 26 650 men and women working at the plant between 1942 and 1947. Site air monitoring data of uranium concentrations and payroll records were used to determine the daily inhaled activities and annualized lung doses. Variations in the activity median aerodynamic diameter of the uranium dust, the solubility of particulate matter in the lungs and the sex-specific breathing rate were investigated as part of a sensitivity analysis. Male and female mean lung doses of 18.9 and 32.7 mGy, respectively, from high-LET alpha irradiation, and there was general agreement with evaluations from previously published epidemiological studies. Annual lung dose estimates and sensitivity analysis for the 26 650 workers in the TEC cohort have been archived on the United States Department of Energy Comprehensive Epidemiologic Data Resource.


Subject(s)
Occupational Exposure , Uranium , Male , Humans , Female , United States , Tennessee/epidemiology , Uranium/analysis , Occupational Exposure/analysis , Lung/chemistry , Dust/analysis
7.
Int J Radiat Biol ; 99(2): 208-228, 2023.
Article in English | MEDLINE | ID: mdl-35758985

ABSTRACT

BACKGROUND: There are few occupational studies of women exposed to ionizing radiation. During World War II, the Tennessee Eastman Corporation (TEC) operated an electromagnetic field separation facility of 1152 calutrons to obtain enriched uranium (235U) used for the Hiroshima atomic bomb. Thousands of women were involved in these operations. MATERIALS AND METHODS: A new study was conducted of 13,951 women and 12,699 men employed at TEC between 1943 and 1947 for at least 90 days. Comprehensive dose reconstruction techniques were used to estimate lung doses from the inhalation of uranium dust based on airborne measurements. Vital status through 2018/2019 was obtained from the National Death Index, Social Security Death Index, Tennessee death records and online public record databases. Analyses included standardized mortality ratios (SMRs) and Cox proportional hazards models. RESULTS: Most workers were hourly (77.7%), white (95.6%), born before 1920 (58.3%), worked in dusty environments (57.0%), and had died (94.9%). Vital status was confirmed for 97.4% of the workers. Women were younger than men when first employed: mean ages 25.0 years and 33.0 years, respectively. The estimated mean absorbed dose to the lung was 32.7 mGy (max 1048 mGy) for women and 18.9 mGy (max 501 mGy) for men. The mean dose to thoracic lymph nodes (TLNs) was 127 mGy. Statistically significant SMRs were observed for lung cancer (SMR 1.25; 95% CI 1.19, 1.31; n = 1654), nonmalignant respiratory diseases (NMRDs) (1.23; 95% CI 1.19, 1.28; n = 2585), and cerebrovascular disease (CeVD) (1.13; 95% CI 1.08, 1.18; n = 1945). For lung cancer, the excess relative rate (ERR) at 100 mGy (95% CI) was 0.01 (-0.10, 0.12; n = 652) among women, and -0.15 (-0.38, 0.07; n = 1002) among men based on a preferred model for men with lung doses <300 mGy. NMRD and non-Hodgkin lymphoma were not associated with estimated absorbed dose to the lung or TLN. CONCLUSIONS: There was little evidence that radiation increased the risk of lung cancer, suggesting that inhalation of uranium dust and the associated high-LET alpha particle exposure to lung tissue experienced over a few years is less effective in causing lung cancer than other types of exposures. There was no statistically significant difference in the lung cancer risk estimates between men and women. The elevation of certain causes of death such as CeVD is unexplained and will require additional scrutiny of workplace or lifestyle factors given that radiation is an unlikely contributor since only the lung and lymph nodes received appreciable dose.


Subject(s)
Lung Neoplasms , Occupational Diseases , Occupational Exposure , Uranium , Male , Humans , Female , Adult , Uranium/adverse effects , Tennessee , Occupational Exposure/adverse effects , Occupational Diseases/etiology , Cohort Studies , Lung Neoplasms/etiology , Dust
8.
Int J Radiat Biol ; 99(2): 183-207, 2023.
Article in English | MEDLINE | ID: mdl-34731066

ABSTRACT

BACKGROUND: Estimates of radiation risks following prolonged exposures at low doses and low-dose rates are uncertain. Medical radiation workers are a major component of the Million Person Study (MPS) of low-dose health effects. Annual personal dose equivalents, HP(10), for individual workers are available to facilitate dose-response analyses for lung cancer, leukemia, ischemic heart disease (IHD) and other causes of death. MATERIALS AND METHODS: The Landauer, Inc. dosimetry database identified 109,019 medical and associated radiation workers first monitored 1965-1994. Vital status and cause of death were determined through 2016. Mean absorbed doses to red bone marrow (RBM), lung, heart, and other organs were estimated by adjusting the recorded HP(10) for each worker by scaling factors, accounting for exposure geometry, the energy of the incident photon radiation, sex of the worker and whether an apron was worn. There were 4 exposure scenarios: general radiology characterized by low-energy x-ray exposure with no lead apron use, interventional radiologists/cardiologists who wore aprons, nuclear medicine personnel and radiation oncologists exposed to high-energy photon radiation, and other workers. Standardized mortality ratio (SMR) analyses were performed. Cox proportional hazards models were used to estimate organ-specific radiation risks. RESULTS: Overall, 11,433 deaths occurred (SMR 0.60; 95%CI 0.59,0.61), 126 from leukemia other than chronic lymphocytic leukemia (CLL), 850 from lung cancer, and 1654 from IHD. The mean duration of monitoring was 23.7 y. The excess relative rate (ERR) per 100 mGy was estimated as 0.10 (95% CI -0.34, 0.54) for leukemia other than CLL, 0.15 (0.02, 0.27) for lung cancer, and -0.10 (-0.27, 0.06) for IHD. The ERR for lung cancer was 0.16 (0.01, 0.32) among the 55,218 male workers and 0.09 (-0.19, 0.36) among the 53,801 female workers; a difference that was not statistically significant (p-value = 0.23). CONCLUSIONS: Medical radiation workers were at increased risk for lung cancer that was higher among men than women, although this difference was not statistically significant. In contrast, the study of Japanese atomic bomb survivors exposed briefly to radiation in 1945 found females to be nearly 3 times the radiation risk of lung cancer compared with males on a relative scale. For medical workers, there were no statistically significant radiation associations with leukemia excluding CLL, IHD or other specific causes of death. Combining these data with other cohorts within the MPS, such as nuclear power plant workers and nuclear submariners, will enable more precise estimates of radiation risks at relatively low cumulative doses.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia , Lung Neoplasms , Neoplasms, Radiation-Induced , Occupational Exposure , Radiation Protection , Male , Humans , Female , United States/epidemiology , Radiometry , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Neoplasms, Radiation-Induced/epidemiology , Neoplasms, Radiation-Induced/etiology
10.
Int J Radiat Biol ; 99(9): 1332-1342, 2023.
Article in English | MEDLINE | ID: mdl-36318723

ABSTRACT

This article summarizes a Symposium on 'Radiation risks of the central nervous system' held virtually at the 67th Annual Meeting of the Radiation Research Society, 3-6 October 2021. Repeated low-dose radiation exposure over a certain period could lead to reduced neuronal proliferation, altered neurogenesis, neuroinflammation and various neurological complications, including psychological consequences, necessitating further research in these areas. Four speakers from radiation biology, genetics and epidemiology presented the latest data from their studies seeking insights into this important topic. This symposium highlighted new and important directions for further research on mental health disorders, neurodegenerative conditions and cognitive impairment. Future studies will examine risks of mental and behavioral disorders and neurodegenerative diseases following protracted radiation exposures to better understand risks of occupational exposures as well as provide insights into risks from exposures to galactic cosmic rays.


Subject(s)
Cosmic Radiation , Occupational Exposure , Radiation Exposure , Occupational Exposure/adverse effects , Central Nervous System
11.
J Am Coll Radiol ; 20(2): 251-264, 2023 02.
Article in English | MEDLINE | ID: mdl-36130692

ABSTRACT

US physicians in multiple specialties who order or conduct radiological procedures lack formal radiation science education and thus sometimes order procedures of limited benefit or fail to order what is necessary. To this end, a multidisciplinary expert group proposed an introductory broad-based radiation science educational program for US medical schools. Suggested preclinical elements of the curriculum include foundational education on ionizing and nonionizing radiation (eg, definitions, dose metrics, and risk measures) and short- and long-term radiation-related health effects as well as introduction to radiology, radiation therapy, and radiation protection concepts. Recommended clinical elements of the curriculum would impart knowledge and practical experience in radiology, fluoroscopically guided procedures, nuclear medicine, radiation oncology, and identification of patient subgroups requiring special considerations when selecting specific ionizing or nonionizing diagnostic or therapeutic radiation procedures. Critical components of the clinical program would also include educational material and direct experience with patient-centered communication on benefits of, risks of, and shared decision making about ionizing and nonionizing radiation procedures and on health effects and safety requirements for environmental and occupational exposure to ionizing and nonionizing radiation. Overarching is the introduction to evidence-based guidelines for procedures that maximize clinical benefit while limiting unnecessary risk. The content would be further developed, directed, and integrated within the curriculum by local faculties and would address multiple standard elements of the Liaison Committee on Medical Education and Core Entrustable Professional Activities for Entering Residency of the Association of American Medical Colleges.


Subject(s)
Radiation Protection , Radiology , Humans , Schools, Medical , Multimedia , Radiology/education , Curriculum
12.
Int J Radiat Biol ; 99(4): 702-711, 2023.
Article in English | MEDLINE | ID: mdl-35930470

ABSTRACT

PURPOSE: This article summarizes a number of presentations from a session on "Radiation and Circulatory Effects" held during the Radiation Research Society Online 67th Annual Meeting, October 3-6 2021. MATERIALS AND METHODS: Different epidemiological cohorts were analyzed with various statistical means common in epidemiology. The cohorts included the one from the U.S. Million Person Study and the Canadian Fluoroscopy Cohort Study. In addition, one of the contributions in our article relies on results from analyses of the Japanese atomic bomb survivors, Russian emergency and recovery workers and cohorts of nuclear workers. The Canadian Fluoroscopy Cohort Study data were analyzed with a larger series of linear and nonlinear dose-response models in addition to the linear no-threshold (LNT) model. RESULTS AND CONCLUSIONS: The talks in this symposium showed that low/moderate acute doses at low/moderate dose rates can be associated with an increased risk of CVD, although some of the epidemiological results for occupational cohorts are equivocal. The usually only limited availability of information on well-known risk factors for circulatory disease (e.g. smoking, obesity, hypertension, diabetes, physical activity) is an important limiting factor that may bias any observed association between radiation exposure and detrimental health outcome, especially at low doses. Additional follow-up and careful dosimetric and outcome assessment are necessary and more epidemiological and experimental research is required. Obtaining reliable information on other risk factors is especially important.


Subject(s)
Cardiovascular Diseases , Neoplasms, Radiation-Induced , Occupational Exposure , Humans , Canada/epidemiology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cohort Studies , Neoplasms, Radiation-Induced/etiology , Occupational Exposure/adverse effects , Radiation Dosage
13.
J Appl Clin Med Phys ; 23(10): e13776, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36109179

ABSTRACT

OBJECTIVE: Cesium-131 brachytherapy is an adjunct for brain tumor treatment, offering potential clinical and radiation protection advantages over other isotopes including iodine-125. We present evidence-based radiation safety recommendations from an initial experience with Cs-131 brachytherapy in the resection cavities of recurrent, previously irradiated brain metastases. METHODS: Twenty-two recurrent brain metastases in 18 patients were resected and treated with permanent Cs-131 brachytherapy implantation using commercially procured seed-impregnated collagen tiles (GammaTile, GT Medical Technologies). Exposure to intraoperative staff was monitored with NVLAP-accredited ring dosimeters. For patient release considerations, NCRP guidelines were used to develop an algorithm for modeling lifetime exposure to family and ancillary staff caring for patients based on measured dose rates. RESULTS: A median of 16 Cs-131 seeds were implanted (range 6-46) with median cumulative strength of 58.72U (20.64-150.42). Resulting dose rates were 1.19 mSv/h (0.28-3.3) on contact, 0.08 mSv/h (0.01-0.35) at 30 cm, and 0.01 mSv/h (0.001-0.03) at 100 cm from the patient. Modeled total caregiver exposure was 0.91 mSv (0.16-3.26), and occupational exposure was 0.06 mSv (0.02-0.23) accounting for patient self-shielding via skull and soft tissue attenuation. Real-time dose rate measurements were grouped into brackets to provide close contact precautions for caregivers ranging from 1-3 weeks for adults and longer for pregnant women and children, including cases with multiple implantations. CONCLUSIONS: Radiological protection precautions were developed based on patient-specific emissions and accounted for multiple implantations of Cs-131, to maintain exposure to staff and the public in accordance with relevant regulatory dose constraints.


Subject(s)
Brain Neoplasms , Radiation Protection , Pregnancy , Adult , Child , Humans , Female , Radiation Protection/methods , Cesium Radioisotopes/therapeutic use , Cesium Radioisotopes/adverse effects , Brain Neoplasms/radiotherapy , Brain , Collagen
14.
Radiat Prot Dosimetry ; 198(19): 1476-1482, 2022 Oct 16.
Article in English | MEDLINE | ID: mdl-36138119

ABSTRACT

External dose rates were measured 1 m away from 230 Lu-177 patients to characterise the variability in normalised dose rates as a function of administered activity, body mass index (BMI) and sex. The largest dose rate observed was 0.07 mSv/h associated with an administered activity of 7.2 GBq. Substantial variability was found in the distribution of the normalised dose rate associated that had an average of 0.0037 mSv/h per GBq and a 95% confidence interval of 0.0024-0.0058 mSv/h per GBq. Based on this study, estimating the patient dose rate based on the Lu-177 gamma exposure factor overestimates the dose rate by a factor of 2. A statistically significant inverse relationship was found between the patient dose rate and patient BMI and an empirically derived equation relating these two quantities was reported. On average, male patient dose rates were 3.5% lower than female dose rates, which may be attributed to the larger average BMI of the male patient group.


Subject(s)
Lutetium , Radioisotopes , Humans , Male , Female , Body Mass Index , Cohort Studies
16.
Int J Radiat Biol ; 98(4): 619-630, 2022.
Article in English | MEDLINE | ID: mdl-30451566

ABSTRACT

BACKGROUND: The reconstruction of lifetime radiation doses for medical workers presents special challenges not commonly encountered for the other worker cohorts comprising the Million Worker Study. METHODS: The selection of approximately 175,000 medical radiation workers relies on using estimates of lifetime and annual personal monitoring results collected since 1977. Approaches have been created to adjust the monitoring results so that mean organ absorbed doses can be estimated. RESULTS: Changes in medical technology and practices have altered the radiation exposure environments to which a worker may have been exposed during their career. Other temporal factors include shifts in regulatory requirements that influenced the conduct of radiation monitoring and the changes in the measured dose quantities. CONCLUSIONS: The use of leaded aprons during exposure to lower energy X rays encountered in fluoroscopically based radiology adds complexity to account for the shielding of the organs located in the torso when dosimeters were worn over leaded aprons. Estimating doses to unshielded tissues such as the brain and lens of the eye become less challenging when dosimeters are worn at the collar above the apron. The absence of leaded aprons in the higher energy photon settings lead to a more straightforward process of relating dosimeter results to mean organ doses.


Subject(s)
Occupational Exposure , Brain , Humans , Lung , Occupational Exposure/analysis , Radiation Dosage , Radiometry/methods
17.
Int J Radiat Biol ; 98(4): 600-609, 2022.
Article in English | MEDLINE | ID: mdl-30452303

ABSTRACT

PURPOSE: Scientific Committee 6-9 was established by the National Council on Radiation Protection and Measurements (NCRP), charged to provide guidance in the derivation of organ doses and their uncertainty, and produced a report, NCRP Report No. 178, Deriving Organ Doses and their Uncertainty for Epidemiologic Studies with a focus on the Million Person Study of Low-Dose Radiation Health Effects (MPS). This review summarizes the conclusions and recommendations of NCRP Report No. 178, with a concentration on and overview of the dosimetry and uncertainty approaches for the cohorts in the MPS, along with guidelines regarding the essential approaches used to estimate organ doses and their uncertainties (from external and internal sources) within the framework of an epidemiologic study. CONCLUSIONS: The success of the MPS is tied to the validity of the dose reconstruction approaches to provide realistic estimates of organ-specific radiation absorbed doses that are as accurate and precise as possible and to properly evaluate their accompanying uncertainties. The dosimetry aspects for the MPS are challenging in that they address diverse exposure scenarios for diverse occupational groups being studied over a period of up to 70 y. Specific dosimetric reconstruction issues differ among the varied exposed populations that are considered: atomic veterans, U.S. Department of Energy workers exposed to both penetrating radiation and intakes of radionuclides, nuclear power plant workers, medical radiation workers, and industrial radiographers. While a major source of radiation exposure to the study population comes from external gamma- or x-ray sources, for some of the study groups, there is also a meaningful component of radionuclide intakes that requires internal radiation dosimetry assessments.


Subject(s)
Radiation Protection , Radiometry , Humans , Nuclear Power Plants , Radiation Dosage , Radioisotopes , Uncertainty
18.
Int J Radiat Biol ; 98(4): 593-599, 2022.
Article in English | MEDLINE | ID: mdl-30810447

ABSTRACT

BACKGROUND: The National Council on Radiation Protection and Measurements (NCRP) is coordinating an expansive epidemiologic effort entitled the Million Person Study of Low-Dose Radiation Health Effects (MPS). Medical workers constitute the largest occupational radiation-exposed group whose doses are typically received gradually over time. METHODS: A unique opportunity exists to establish an Institutional Review Board/Privacy Board (IRB/PB) approved, retrospective feasibility sub-cohort of diseased Memorial Sloan Kettering Cancer Center (MSK) medical radiation workers to reconstruct occupational/work history, estimate organ-specific radiation absorbed doses, and review existing publicly available records for mortality from cancer (including leukemia) and other diseases. Special emphasis will be placed on dose reconstruction approaches as a means to provide valid organ dose estimates that are as accurate and precise as possible based on the available data, and to allow proper evaluation of accompanying uncertainties. Such a study that includes validated dose measurements and information on radiation exposure conditions would significantly reduce dose uncertainties and provided greatly improved information on chronic low-dose risks. RESULTS: The feasibility sub-cohort will include deceased radiation workers from MSK who worked during the nearly seventy-year timeframe from 1946 through 2010 and were provided individual personal radiation dosimetry monitors. A feasibility assessment focused on obtaining records for about 25-30,000 workers, with over 124,000 annual doses, including personnel/work histories, specific dosimetry data, and appropriate information for epidemiologic mortality tracing will be conducted. MSK radiation dosimetry measurements have followed stringent protocols complying with strict worker protection standards in order to provide accurate dose information for radiation workers that include detailed records of work practices (including specific task exposure conditions, radiation type, energy, geometry, personal protective equipment usage, badge position, and missed doses), as well as recorded measurements. These dose measurements have been ascertained through a variety of techniques that have evolved over the years, from film badges to thermoluminescent dosimetry technology to optically stimulated luminescent methodologies. It is expected that individual total doses for the sub-cohort will have a broad range from <10 mSv to > =1000 mSv. CONCLUSIONS: MSK has pioneered the use of novel radiation diagnostic and therapeutic approaches over time (including initial work with x-rays, radium, and radon), with workplace safety in mind, resulting in a variety of radiation worker exposure scenarios. The results of this feasibility sub-cohort of deceased radiation workers, and associated lessons learned may potentially be applied to an expanded multicenter study of about 170,000 medical radiation worker component of the MPS.


Subject(s)
Radiation Protection , Feasibility Studies , Humans , Radiation Dosage , Radiation Protection/methods , Radiometry/methods , Retrospective Studies
19.
Int J Radiat Biol ; 98(4): 750-768, 2022.
Article in English | MEDLINE | ID: mdl-33900890

ABSTRACT

PURPOSE: This paper reviews the history of the radium dial workers in the United States, summarizes the scientific progress made since the last evaluation in the early 1990s, and discusses current progress in updating the epidemiologic cohort and applying new dosimetric models for radiation risk assessment. BACKGROUND: The discoveries of radiation and radioactivity led quickly to medical and commercial applications at the turn of the 20th century, including the development of radioluminescent paint, made by combining radium with phosphorescent material and adhesive. Workers involved with the painting of dials and instruments included painters, handlers, ancillary workers, and chemists who fabricated the paint. Dial painters were primarily women and, prior to the mid to late 1920s, would use their lips to give the brush a fine point, resulting in high intakes of radium. The tragic experience of the dial painters had a significant impact on industrial safety standards, including protection measures taken during the Manhattan Project. The dial workers study has formed the basis for radiation protection standards for intakes of radionuclides by workers and the public. EPIDEMIOLOGIC APPROACH: The mortality experience of 3,276 radium dial painters and handlers employed between 1913 and 1949 is being determined through 2019. The last epidemiologic follow-up was 30 years ago when most of these workers were still alive. Nearly 65% were born before 1920, 37.5% were teenagers when first hired, and nearly 50% were hired before 1930 when the habit of placing brushes in mouths essentially stopped. Comprehensive dose reconstruction techniques are being applied to estimate organ doses for each worker related to the intake of 226Ra, 228Ra, and associated photon exposures. Time dependent dose-response analyses will estimate lifetime risks for specific causes of death. DISCUSSION: The study of radium dial workers is part of the Million Person Study of low-dose health effects that is designed to evaluate radiation risks among healthy American workers and veterans. Despite being one of the most important and influential radiation effects studies ever conducted, shifting programmatic responsibilities and declining funding led to the termination of the radium program of studies in the early 1990s. Renewed interest and opportunity have arisen. With scientific progress made in dosimetric methodology and models, the ability to perform a study over the entire life span, and the potential applicability to other scenarios such as medicine, environmental contamination and space exploration, the radium dial workers have once again come to the forefront.


Subject(s)
Radiation Injuries , Radiation Protection , Radium , Adolescent , Female , Humans , Radioisotopes/analysis , Radiometry/methods , United States
20.
Int J Radiat Biol ; 98(4): 795-821, 2022.
Article in English | MEDLINE | ID: mdl-34669549

ABSTRACT

BACKGROUND: Epidemiologic studies of radiation-exposed populations form the basis for human safety standards. They also help shape public health policy and evidence-based health practices by identifying and quantifying health risks of exposure in defined populations. For more than a century, epidemiologists have studied the consequences of radiation exposures, yet the health effects of low levels delivered at a low-dose rate remain equivocal. MATERIALS AND METHODS: The Million Person Study (MPS) of U.S. Radiation Workers and Veterans was designed to examine health effects following chronic exposures in contrast with brief exposures as experienced by the Japanese atomic bomb survivors. Radiation associations for rare cancers, intakes of radionuclides, and differences between men and women are being evaluated, as well as noncancers such as cardiovascular disease and conditions such as dementia and cognitive function. The first international symposium, held November 6, 2020, provided a broad overview of the MPS. Representatives from four U.S. government agencies addressed the importance of this research for their respective missions: U.S. Department of Energy (DOE), the Centers for Disease Control and Prevention (CDC), the U.S. Department of Defense (DOD), and the National Aeronautics and Space Administration (NASA). The major components of the MPS were discussed and recent findings summarized. The importance of radiation dosimetry, an essential feature of each MPS investigation, was emphasized. RESULTS: The seven components of the MPS are DOE workers, nuclear weapons test participants, nuclear power plant workers, industrial radiographers, medical radiation workers, nuclear submariners, other U.S. Navy personnel, and radium dial painters. The MPS cohorts include tens of thousands of workers with elevated intakes of alpha particle emitters for which organ-specific doses are determined. Findings to date for chronic radiation exposure suggest that leukemia risk is lower than after acute exposure; lung cancer risk is much lower and there is little difference in risks between men and women; an increase in ischemic heart disease is yet to be seen; esophageal cancer is frequently elevated but not myelodysplastic syndrome; and Parkinson's disease may be associated with radiation exposure. CONCLUSIONS: The MPS has provided provocative insights into the possible range of health effects following low-level chronic radiation exposure. When the 34 MPS cohorts are completed and combined, a powerful evaluation of radiation-effects will be possible. This final article in the MPS special issue summarizes the findings to date and the possibilities for the future. A National Center for Radiation Epidemiology and Biology is envisioned.


Subject(s)
Nuclear Weapons , Radiation Exposure , Biology , Female , Humans , Male , Nuclear Power Plants , Radiation Exposure/adverse effects , Radiometry
SELECTION OF CITATIONS
SEARCH DETAIL
...