Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Biochem ; 662: 114999, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36519741

ABSTRACT

Due to their ability to form extremely heat resistant spores, anaerobic bacteria are responsible for frequent food spoilage. The development of rapid and specific methods for the detection and quantification of spore contamination is therefore of major interest. In this paper, we describe for the first time the selection of aptamers specific to spores of Geobacillus stearothermophilus (Gbs), which induce flat sour spoilage in vegetable cans. Eighteen Spore-SELEX cycles were performed including 4 counter-selections with 12 bacteria commonly found in cannery. To optimise candidate amplification, PCR in emulsion was performed, and high-throughput sequencing analysis was applied to follow candidate evolution. Sequencing of aptamers from cycle 18 revealed 43 overrepresented sequences whose copy number exceeds 0.15% of the total obtained sequences. Within this group, the A01 aptamer presented a much higher enrichment with a relative abundance of 17.71%. Affinity and specificity for Gbs spores of the 10 most abundant candidates at cycle 18 were confirmed by PCR assay based on aptamer-spore complex formation and filtration step. Obtaining these aptamers is the starting point for the future development of biosensors dedicated to the detection of Gbs spores.


Subject(s)
Aptamers, Nucleotide , Geobacillus stearothermophilus , Geobacillus stearothermophilus/genetics , Spores, Bacterial/genetics , Bacteria , Food , Polymerase Chain Reaction , Aptamers, Nucleotide/genetics , SELEX Aptamer Technique
2.
Food Microbiol ; 73: 334-341, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29526221

ABSTRACT

Temperatures encountered in cannery allow growth of thermophilic spore-forming bacteria, including the strictly anaerobe Moorella thermoacetica, which grows optimally from 55 °C to 65 °C and is the main cause of spoilage of low-acid canned foods (LACFs) at high temperature. Resistance to wet-heat, biocides and UV-C of spores formed at different temperatures was assessed either for a selection of M. thermoacetica strains or for the strain M. thermoacetica ATCC 39073. Spores formed at 45 °C were significantly more sensitive to wet-heat than spores produced at 55 °C, while spores produced at 65 °C were as heat-resistant as spores produced at 55 °C. Spores of M. thermoacetica ATCC 39073 produced at 45 °C were significantly less resistant to peracetic acid than spores formed at 55 °C, while no difference in sensitivity to H2O2 or to UV-C treatment was observed whatever the sporulation temperature. However, both types of treatment enabled at least a 3.3 log CFU/mL reduction of M. thermoacetica ATCC 39073 spores. M. thermoacetica spores thus showed higher resistance properties when sporulation temperature was close to optimal growth temperature. These findings suggest food spoilage due to M. thermoacetica species could be controllable by holding temperatures below optimal growth temperature from the blanching step to the can filling step.


Subject(s)
Moorella/growth & development , Spores, Bacterial/chemistry , Food, Preserved/microbiology , Hot Temperature , Hydrogen Peroxide/pharmacology , Moorella/chemistry , Moorella/drug effects , Peracetic Acid/pharmacology , Spores, Bacterial/drug effects , Spores, Bacterial/growth & development , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...