Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Infect Dis ; 8(7): 1280-1290, 2022 07 08.
Article in English | MEDLINE | ID: mdl-35748568

ABSTRACT

Rickettsia is a genus of Gram-negative bacteria that has for centuries caused large-scale morbidity and mortality. In recent years, the resurgence of rickettsial diseases as a major cause of pyrexias of unknown origin, bioterrorism concerns, vector movement, and concerns over drug resistance is driving a need to identify novel treatments for these obligate intracellular bacteria. Utilizing an uvGFP plasmid reporter, we developed a screen for identifying anti-rickettsial small molecule inhibitors using Rickettsia canadensis as a model organism. The screening data were utilized to train a Bayesian model to predict growth inhibition in this assay. This two-pronged methodology identified anti-rickettsial compounds, including duartin and JSF-3204 as highly specific, efficacious, and noncytotoxic compounds. Both molecules exhibited in vitro growth inhibition of R. prowazekii, the causative agent of epidemic typhus. These small molecules and the workflow, featuring a high-throughput phenotypic screen for growth inhibitors of intracellular Rickettsia spp. and machine learning models for the prediction of growth inhibition of an obligate intracellular Gram-negative bacterium, should prove useful in the search for new therapeutic strategies to treat infections from Rickettsia spp. and other obligate intracellular bacteria.


Subject(s)
Machine Learning , Bayes Theorem , Plasmids
2.
Biochemistry ; 43(22): 6995-7002, 2004 Jun 08.
Article in English | MEDLINE | ID: mdl-15170337

ABSTRACT

The contribution of transmembrane regions I, II, and III of the Rickettsia prowazekii ATP/ADP translocase to the structure of the putative water-filled ATP translocation channel was evaluated from the accessibility of hydrophilic, thiol-reactive, methanethiosulfonate reagents to a library of 68 independent cysteine-substitution mutants heterologously expressed in Escherichia coli. The MTS reagents used were MTSES (negatively charged) and MTSET and MTSEA (both positively charged). Mutants F036C, Y042C, and R046C (TM I), K066C and P072C (TM II), and F101C, F105C, F108C, Y113C, and P114C (TM III) had no assayable transport activity, indicating that cysteine substitution at these positions may not be tolerated. All three MTS reagents inhibit the transport of ATP in mutants of TM I (L039C, S043C, S047C, I048C) and TM II (S061C, S063C, T067C, I069C, V070C, A074C). Further, these residues appear to cluster along a single face of the transmembrane domain. Preexposure of MTS-reactive mutants S047C (TM I) and T067C (TM II) to high levels of ATP resulted in protection from MTS-mediated inhibition. This indicated that both TM I and TM II make major contributions to the structure of an aqueous ATP translocation pathway. Finally, on the basis of the lack of accessibility of charged MTS reagents to the thiol groups in mutants of TM III, it appears that TM III is not exposed to the ATP translocation channel. Cysteine substitution of residues constituting a highly conserved "phenylalanine face" in TM III resulted in ablation of ATP transport activity. Further, substituting these phenylalanine residues for either isoleucine or tyrosine also resulted in much lower transport activity, indicating that some property of phenylalanine at these positions that is not shared by cysteine, isoleucine, or tyrosine is critical to translocase activity.


Subject(s)
Cysteine/genetics , Ethyl Methanesulfonate/analogs & derivatives , Mitochondrial ADP, ATP Translocases/metabolism , Mutagenesis , Rickettsia prowazekii/enzymology , Sulfhydryl Compounds/chemistry , Amino Acid Sequence , Amino Acid Substitution , Ethyl Methanesulfonate/pharmacology , Ion Channel Gating , Isoleucine/chemistry , Mesylates/metabolism , Molecular Sequence Data , Mutation/genetics , Phenylalanine/chemistry , Sequence Homology, Amino Acid , Translocation, Genetic , Tyrosine/chemistry
3.
J Bacteriol ; 186(10): 3262-5, 2004 May.
Article in English | MEDLINE | ID: mdl-15126491

ABSTRACT

The two obligate intracellular alphaproteobacteria Rickettsia prowazekii and Caedibacter caryophilus, a human pathogen and a paramecium endosymbiont, respectively, possess transport systems to facilitate ATP uptake from the host cell cytosol. These transport proteins, which have 65% identity at the amino acid level, were heterologously expressed in Escherichia coli, and their properties were compared. The results presented here demonstrate that the caedibacter transporter had a broader substrate than the more selective rickettsial transporter. ATP analogs with modified sugar moieties, dATP and ddATP, inhibited the transport of ATP by the caedibacter transporter but not by the rickettsial transporter. Both transporters were specific for di- and trinucleotides with an adenine base in that adenosine tetraphosphate, AMP, UTP, CTP, and GTP were not competitive inhibitors. Furthermore, the antiporter nature of both transport systems was shown by the dependence of the efflux of [alpha-32P]ATP on the influx of substrate (ATP but not dATP for rickettsiae, ATP or dATP for caedibacter).


Subject(s)
Adenosine Triphosphate/metabolism , Alphaproteobacteria/metabolism , Deoxyadenine Nucleotides/metabolism , Mitochondrial ADP, ATP Translocases/metabolism , Nucleotide Transport Proteins/metabolism , Rickettsia prowazekii/metabolism , Substrate Specificity
4.
Biochemistry ; 42(43): 12562-9, 2003 Nov 04.
Article in English | MEDLINE | ID: mdl-14580202

ABSTRACT

The contribution of transmembrane region VIII of the Rickettsia prowazekii ATP/ADP translocase to the structure of the water-filled channel through which ATP is transported was evaluated from the accessibility of three hydrophilic, thiol reactive, methanethiosulfonate reagents to a library of 21 single-cysteine substitution mutants expressed in Escherichia coli. A negatively charged reagent (MTSES) and two positively charged reagents (MTSET and MTSEA) were used. Mutants Q323C and G327C did not tolerate cysteine substitution and were almost completely deficient in ATP transport. The remaining mutants exhibited 25-226% of the cysteine-less parent's transport activity. Five patterns of inhibition of ATP transport by the MTS reagents were observed. (i) ATP transport was not inhibited by any of the three MTS reagents in mutants Q321C, F324C, A332C, and L335C and only marginally in F333C. (ii) Transport activity of mutants F322C, Q326C, and A330C was markedly inhibited by all three reagents. (iii) ATP transport was inhibited by MTSEA in only the largest group of mutants (M334C, I336C, G337C, S338C, N339C, I340C, and I341C). (iv) Transport activity was inhibited by MTSET and MTSEA, whereas high concentrations of MTSES were required to inhibit mutants W328C, V329C, and I331C. However, mutant W328C could be inhibited by MTSES in the presence of sub-K(m) concentrations of the substrate. (v) ATP transport by mutant Y325C was unaffected by MTSEA, but inhibited approximately 50% by MTSET and MTSES. Transport of ATP protected mutants (F322C, W328C, V329C, A330C, and I331C) from MTS inhibition. Mutants in the half of TM VIII that is closest to the cytoplasm were not inhibited well by MTSES or MTSET in either whole cells or inside-out vesicles. The results indicate that TM VIII makes a major contribution to the structure of the aqueous translocation pathway, that the accessibility to impermeant thiol reagents is influenced (blocked or stimulated) by substrate, and that there is great variation in accessibility to MTS reagents along the length of TM VIII.


Subject(s)
Cysteine/genetics , Mitochondrial ADP, ATP Translocases/metabolism , Rickettsia prowazekii/enzymology , Sulfhydryl Compounds/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Cytoplasm/metabolism , Mitochondrial ADP, ATP Translocases/chemistry , Mitochondrial ADP, ATP Translocases/genetics , Molecular Sequence Data , Mutagenesis, Site-Directed , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...