Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 120: 104603, 2021 08.
Article in English | MEDLINE | ID: mdl-34051693

ABSTRACT

Research results on 3D printed fluoropolymers are scarce since the filaments were introduced commercially only in the last several years to enable fused filament fabrication (FFF) of structural components for more demanding service conditions, where chemical, UV or fire resistance, high purity, sterilizability or biocompatibility are critical such as in biomedical industry. This experimental study reports on additive manufacturing and quasi-static mechanical testing of polyvinylidene fluoride (PVDF) and in-vitro cytocompatible polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) specimens that were 3D printed with different infill patterns at 75% density (linear, cubic, cross, concentric, octet, zigzag, triangular). Recommendations are provided for addressing issues related to weak adhesion and obtrusive warping, which occur in open-chamber FFF printer due to semi-crystalline and hydrophobic nature of PVDF-based thermoplastics. The measured tensile and flexural stress-strain curves are analyzed to determine the influence of strut-based infills on the strength and elastic performance by including comparisons in ratios between strength, modulus of elasticity and weight of the specimens. The concentric pattern demonstrates the highest tensile strength, while the cross and triangular lattices - the lowest one. In three-point bending, the linear pattern delivers the lowest strength, while the rest exhibit comparable mechanical properties. The results are conducive to the design of 3D printable PVDF homopolymer and copolymer load-bearing structures serving as lightweight high-performance components in biomedical applications.


Subject(s)
Polyvinyls , Printing, Three-Dimensional , Elasticity , Prostheses and Implants
2.
Sensors (Basel) ; 17(12)2017 Dec 12.
Article in English | MEDLINE | ID: mdl-29231850

ABSTRACT

This paper proposes an approach for designing an efficient vibration energy harvester based on a vibro-impacting piezoelectric microcantilever with a geometric shape that has been rationally modified in accordance with results of dynamic optimization. The design goal is to increase the amplitudes of higher-order vibration modes induced during the vibro-impact response of the piezoelectric transducer, thereby providing a means to improve the energy conversion efficiency and power output. A rational configuration of the energy harvester is proposed and it is demonstrated that the new design retains essential modal characteristics of the optimal microcantilever structures, further providing the added benefit of less costly fabrication. The effects of structural dynamics associated with advantageous exploitation of higher vibration modes are analyzed experimentally by means of laser vibrometry as well as numerically via transient simulations of microcantilever response to random excitation. Electrical characterization results indicate that the proposed harvester outperforms its conventional counterpart (based on the microcantilever of the constant cross-section) in terms of generated electrical output. Reported results may serve for the development of impact-type micropower generators with harvesting performance that is enhanced by virtue of self-excitation of large intensity higher-order mode responses when the piezoelectric transducer is subjected to relatively low-frequency excitation with strongly variable vibration magnitudes.

3.
Sensors (Basel) ; 16(1)2015 Dec 23.
Article in English | MEDLINE | ID: mdl-26703623

ABSTRACT

The piezoelectric transduction mechanism is a common vibration-to-electric energy harvesting approach. Piezoelectric energy harvesters are typically mounted on a vibrating host structure, whereby alternating voltage output is generated by a dynamic strain field. A design target in this case is to match the natural frequency of the harvester to the ambient excitation frequency for the device to operate in resonance mode, thus significantly increasing vibration amplitudes and, as a result, energy output. Other fundamental vibration modes have strain nodes, where the dynamic strain field changes sign in the direction of the cantilever length. The paper reports on a dimensionless numerical transient analysis of a cantilever of a constant cross-section and an optimally-shaped cantilever with the objective to accurately predict the position of a strain node. Total effective strain produced by both cantilevers segmented at the strain node is calculated via transient analysis and compared to the strain output produced by the cantilevers segmented at strain nodes obtained from modal analysis, demonstrating a 7% increase in energy output. Theoretical results were experimentally verified by using open-circuit voltage values measured for the cantilevers segmented at optimal and suboptimal segmentation lines.

4.
Sensors (Basel) ; 13(4): 5368-80, 2013 Apr 22.
Article in English | MEDLINE | ID: mdl-23609803

ABSTRACT

Examination of wrist radial pulse is a noninvasive diagnostic method, which occupies a very important position in Traditional Chinese Medicine. It is based on manual palpation and therefore relies largely on the practitioner's subjective technical skills and judgment. Consequently, it lacks reliability and consistency, which limits practical applications in clinical medicine. Thus, quantifiable characterization of the wrist pulse diagnosis method is a prerequisite for its further development and widespread use. This paper reports application of a noninvasive CCD sensor-based hybrid measurement system for radial pulse signal analysis. First, artery wall deformations caused by the blood flow are calibrated with a laser triangulation displacement sensor, following by the measurement of the deformations with projection moiré method. Different input pressures and fluids of various viscosities are used in the assembled artificial blood flow system in order to test the performance of laser triangulation technique with detection sensitivity enhancement through microfabricated retroreflective optical element placed on a synthetic vascular graft. Subsequently, the applicability of double-exposure whole-field projection moiré technique for registration of blood flow pulses is considered: a computational model and representative example are provided, followed by in vitro experiment performed on a vascular graft with artificial skin atop, which validates the suitability of the technique for characterization of skin surface deformations caused by the radial pulsation.


Subject(s)
Micro-Electrical-Mechanical Systems/instrumentation , Micro-Electrical-Mechanical Systems/methods , Pulse/instrumentation , Pulse/methods , Radial Artery/physiology , Calibration , Humans , Lasers , Optical Phenomena , Regional Blood Flow , Reproducibility of Results , Surface Properties
5.
Sensors (Basel) ; 9(12): 10201-16, 2009.
Article in English | MEDLINE | ID: mdl-22303170

ABSTRACT

This paper reports on numerical modeling and simulation of a generalized contact-type MEMS device having large potential in various micro-sensor/actuator applications, which are currently limited because of detrimental effects of the contact bounce phenomenon that is still not fully explained and requires comprehensive treatment. The proposed 2-D finite element model encompasses cantilever microstructures operating in a vacuum and impacting on a viscoelastic support. The presented numerical analysis focuses on the first three flexural vibration modes and their influence on dynamic characteristics. Simulation results demonstrate the possibility to use higher modes and their particular points for enhancing MEMS performance and reliability through reduction of vibro-impact process duration.

SELECTION OF CITATIONS
SEARCH DETAIL
...