Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 12(11): e0043323, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37823648

ABSTRACT

An influenza virus strain, A/equine/Almaty/268/2020, was isolated from horses in southeast Kazakhstan in 2020. Here, we present the nearly complete genome sequence of this epidemic strain. This study was aimed at obtaining the complete genome sequence of the isolate.

2.
Microbiol Resour Announc ; 9(39)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32972927

ABSTRACT

In 2015, in the Kazakh part of the northern Caspian Sea region, during the monitoring of wild birds for avian influenza viruses, a highly pathogenic A/flamingo/Mangistau/6570/2015(H5N1) influenza virus was isolated from a dead flamingo. This study aimed to obtain the complete genome sequence of the isolate.

3.
Heliyon ; 6(1): e03099, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32042933

ABSTRACT

In 2014, a novel Avian orthoavulavirus 16 species was described among wild birds in Korea. In 2018, after massive parallel sequencing of archival strains of Avian orthoavulaviruses, isolated in 2006 in Central Kazakhstan, isolates belonging to this serotype were detected. The obtained data allowed to trace the evolution of this serotype in Asia and to reveal its evolutionary relationships with other Avulavirinae subfamily species. It was determined that Avian orthoavulavirus 16 is phylogenetically very close to Avian orthoavulavirus 1 (Newcastle disease virus) in its genomic characteristics. It is known that Avian orthoavulavirus 1 is divided into two phylogenetically distant Classes I and II. Avian orthoavulavirus 16 turned out to be very close to lentogenic Class I, which circulates mainly among wild birds. It was suggested that Avian orthoavulaviruses 1 and 16 may have common evolutionary origin and in ecological terms, both serotypes are circulating among wild birds of the order Anseriformes (ducks and geese), but Avian orthoavulavirus 1 has gradually replaced Avian orthoavulavirus 16 from active circulation.

4.
Avian Dis ; 63(4): 599-605, 2019 12.
Article in English | MEDLINE | ID: mdl-31865674

ABSTRACT

Virulent strains of avian orthoavulavirus 1, historically known as Newcastle disease virus (NDV), are widespread and cause high levels of mortality in poultry worldwide. Wild birds may play an important role in the maintenance of Avian orthoavulavirus 1 in nature. Prior to 2014, most of the lentogenic NDV strains isolated from Central Asia were obtained from the avian order Anseriformes (ducks and geese). Wild birds were monitored from 2014-2016 to detect the circulation of NDV. A total of 1522 samples belonging to 73 avian species were examined, and 26 positive samples were identified. The isolates of Avian orthoavulavirus 1 belonged to three genotypes: viruses from doves (Columbiformes) and cormorants (Suliformes) were attributed to the velogenic genotypes VI and XIII, respectively, while the isolate from poultry belonged to lentogenic genotype I. The isolation of Avian orthoavulavirus 1 from doves may confirm their role as a reservoir of pigeon paramyxoviruses (antigenic variant of the genotype VI NDV) in nature and indicates the potential threat of introduction of velogenic strains into the poultry population. Our study describes an epizootic scenario in Kazakhstan among cormorants with mortality among juveniles of up to 3 wk of age and isolation of the NDV from apparently healthy birds. These observations may support the idea that cormorants are one of the potential reservoirs and victims of velogenic Avian orthoavulavirus 1 in Central Asia. The seasonal migrations of cormorants may partially contribute to viral dissemination throughout the continent; however, this hypothesis needs more evidence.


Cormoranes como posibles víctimas y reservorios del virus velogénicos de la enfermedad de Newcastle (Orthoavulavirus-1) en Asia Central. Las cepas virulentas del Orthoavulavirus aviar 1, históricamente conocido como virus de la enfermedad de Newcastle (NDV), están muy extendidas y causan altos niveles de mortalidad en avicultura en todo el mundo. Las aves silvestres pueden desempeñar un papel importante en el mantenimiento del Orthoavulavirus aviar 1 en la naturaleza. Antes del año 2014, la mayoría de las cepas de Newcastle lentogénicas aisladas de Asia Central se obtenían del orden aviar Anseriformes (patos y gansos). Las aves silvestres fueron monitoreadas entre los años 2014 y 2016 para detectar la circulación de virus de Newcastle. Se examinaron un total de 1522 muestras pertenecientes a 73 especies de aves, y se identificaron 26 muestras positivas. Los aislamientos de Orthoavulavirus aviar 1pertenecían a tres genotipos: los virus de palomas (Columbiformes) y de cormoranes (Suliformes) se atribuyeron a los genotipos velogénicos VI y XIII, respectivamente, mientras que los aislamientos de aves comerciales pertenecieron al genotipo lentogénico I. El aislamiento del Orthoavulavirus aviar 1 lentogénico de las palomas puede confirmar su papel como reservorio de los paramixovirus de paloma (variantes antigénicas del genotipo VI del virus de Newcastle) en la naturaleza e indica la amenaza potencial de la introducción de cepas velogénicas en la población avícola. Este estudio describe un escenario epizoótico en Kazajstán entre cormoranes con mortalidad de aves jóvenes de hasta tres semanas de edad y aislamiento del virus de Newcastle de aves aparentemente sanas. Estas observaciones pueden apoyar la idea de que los cormoranes son uno de los reservorios potenciales y también víctimas del Orthoavulavirus aviar 1 velogénico en Asia Central. Las migraciones estacionales de cormoranes pueden contribuir parcialmente a la diseminación viral en todo el continente; Sin embargo, esta hipótesis requiere de más evidencia.


Subject(s)
Bird Diseases/epidemiology , Birds , Disease Reservoirs/veterinary , Epidemics/veterinary , Newcastle Disease/epidemiology , Newcastle disease virus/physiology , Age Factors , Animals , Bird Diseases/transmission , Bird Diseases/virology , Disease Reservoirs/virology , Kazakhstan/epidemiology , Mortality , Newcastle Disease/transmission , Newcastle Disease/virology , Prevalence
5.
Microbiol Resour Announc ; 8(47)2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31753934

ABSTRACT

An influenza virus strain, A/Almaty/6327/2014 (H1N1), was isolated in Almaty (in southeastern Kazakhstan) during a human population surveillance study in 2014. Here, we present the nearly complete genome sequence of this epidemic strain that was compared to the postpandemic variants of A(H1N1)pdm09.

6.
Microbiol Resour Announc ; 8(18)2019 May 02.
Article in English | MEDLINE | ID: mdl-31048397

ABSTRACT

An avian influenza virus strain, A/mallard/Balkhash/6304/2014 (H1N1), was isolated during a wild bird monitoring study in Kazakhstan in 2014. The virus was isolated from a wild mallard duck (Anas platyrhynchos) in eastern Kazakhstan. Here, we present the near-complete genome sequence of the virus.

7.
PLoS One ; 12(12): e0190339, 2017.
Article in English | MEDLINE | ID: mdl-29284037

ABSTRACT

Three isolates APMV/gull/Kazakhstan/5976/2014, APMV/gull/Kazakhstan/ 5977/2014 and APMV/gull/Kazakhstan/5979/2014, were obtained from independent samples during annual surveillance for avian influenza and paramyxoviruses in wild birds from the Caspian Sea coast in Western Kazakhstan, and were initially identified as putative paramyxoviruses on the basis of electron microscopy. Hemagglutination Inhibition Assays with antisera to nine known APMV serotypes (APMV1-9) indicated no relation to any of them. Next generation sequencing of whole genome sequences indicated the three isolates were genetically identical, and had a nucleotide structure typical for all APMVs, consisting of six genes 3'-NP-P-M-F-HN-L-5'. Phylogenetic analyses, and assessment of amino acid identities, suggested the most closely related lineages to be APMV-2, 8, 10 and 15, but the novel isolate had less than 64% identity to them and all other known avian paramyxoviruses. This value was above levels considered to generally define other APMV serotypes. Estimates of the evolutionary divergence of the nucleotide sequences of the genomes of APMVs have shown that novel Kazakhstan APMV strain was closest to APMV-2, APMV-8, APMV-10 and APMV-15, with calculated distance values of 2.057, 2.058, 2.026 and 2.286 respectively, which is above values considered to differentiate other serotypes (observed minimum was 1.108 between APMV-1 and recently isolated APMV/UPO216/Korea). Together, the data suggest that isolate APMV/gull/Kazakhstan/5976/2014 and other two should be considered as the first representative of a novel APMV-20 group, and is the first time that avian paramyxoviruses have been found infecting members of the gull family, extending the known taxonomic host range.


Subject(s)
Avulavirus/isolation & purification , Charadriiformes/virology , Animals , Avulavirus/genetics , Genome, Viral , Kazakhstan
8.
Virol J ; 13: 23, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26846092

ABSTRACT

BACKGROUND: Screening wild birds for avian paramyxoviruses is of increasing importance. 6913 samples of tracheal and cloacal swabs were collected during 2002-2013 and tested to study the prevalence of APMVs in wild avifauna of Kazakhstan. As a result, 45 isolates were obtained during this period and their ecological niches and genetic relationships were defined. METHODS: Tracheal and cloacal samples from wild birds were collected using sterile swabs placed in viral transport medium and kept in liquid nitrogen until delivery to the laboratory. Samples were inoculated into 10-day-old embryonated chicken eggs and reverse transcription PCR (RT-PCR) assays were performed via a one-step protocol. The PCR products were sequenced and phylogenetic trees were constructed using the 'Neighbour Joining' method. RESULTS: Six thousand nine hundred thirteen samples from 183 bird species were investigated and 45 isolates belonging to four different serotypes APMV-1, APMV-4, APMV-6 and APMV-8 were identified. All APMVs were isolated predominantly from birds belonging to Anatidae family (ducks and geese) and only one APMV-4 isolate was obtained from shorebird (Curlew) on the Caspian seashore. Genetic studies showed that the recovered APMV-1 strains had highest homology with European isolates. APMV-4 strains isolated in 2003, and APMV-6 and APMV-8 isolated in 2013 were 99 % identical to isolates from Far East. CONCLUSION: This is the first reported characterization of avian paramyxoviruses from wild birds isolated in Kazakhstan. These data confirm the wide distribution of APMV-1, APMV-4 and APMV-6 in the Asian subcontinent. The obtained data contribute to the accumulation of knowledge on the genetic diversity and prevalence of APMVs in wild bird populations.


Subject(s)
Avulavirus Infections/veterinary , Avulavirus/classification , Avulavirus/genetics , Bird Diseases/epidemiology , Bird Diseases/virology , Animal Migration , Animals , Animals, Wild , Bird Diseases/history , Genetic Variation , Geography , History, 21st Century , Kazakhstan/epidemiology , Phylogeny , Prevalence , Sequence Analysis, DNA , Serogroup
9.
Genome Announc ; 3(4)2015 Jul 16.
Article in English | MEDLINE | ID: mdl-26184926

ABSTRACT

An avian paramyxovirus 6 strain was isolated during a wild bird monitoring study in Kazakhstan in 2013. The virus was isolated from a wild duck red-crested pochard (Netta rufina) in southeastern Kazakhstan. Here, we present the complete genome sequence of the virus.

SELECTION OF CITATIONS
SEARCH DETAIL
...