Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 10(46): 39435-39440, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30411606

ABSTRACT

In recent years, many solution-processed oxide transistors have been reported with mobility rivaling or exceeding their vacuum-deposited counterparts. Here, we show that water absorption from the environment by solution-processed dielectric materialsexplains this enhanced mobility. By monitoring the water content of Al2O3, ZrO2, and bilayer dielectric materials, we demonstrate how water absorption by the dielectric affects electrical characteristics in solution-processed metal oxide transistors. These effects, including capacitance-frequency dispersion, counterclockwise hysteresis in transfer curves, and high channel mobility, are elucidated by electron transfer between the gate/channel and trap states within the band gap of the dielectric created by the water.

2.
ACS Appl Mater Interfaces ; 10(4): 3732-3738, 2018 Jan 31.
Article in English | MEDLINE | ID: mdl-29300452

ABSTRACT

Low-temperature solution processing of p-type transparent conducting oxides (TCOs) will open up new opportunities for applications on flexible substrates that utilize low-cost, large-area manufacturing. Here, we report a facile solution synthesis method that produces two p-type TCO thin films: copper chromium oxide and copper-doped chromium oxide. Using combustion chemistry, both films are solution processed at 180 °C, which is lower than most recent efforts. While adopting the same precursor preparation and annealing temperature, we find that annealing environment (solvent vapor vs open air) dictates the resulting film phase, hence the optoelectronic properties. The effect of annealing environment on the reaction mechanism is discussed. We further characterize the electronic, optical, and transport properties of the two materials, and compare the differences. Their applications in optoelectronic devices are successfully demonstrated in transparent p-n junction diodes and as hole transport layers in organic photovoltaic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...