Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Microbiol ; 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37485746

ABSTRACT

Trichomonas vaginalis is an extracellular protozoan parasite of the human urogenital tract, responsible for a prevalent sexually transmitted infection. Trichomoniasis is accompanied by a dysbiotic microbiome that is characterised by the depletion of host-protective commensals such as Lactobacillus gasseri, and the flourishing of a bacterial consortium that is comparable to the one seen for bacterial vaginosis, including the founder species Gardnerella vaginalis. These two vaginal bacteria are known to have opposite effects on T. vaginalis pathogenicity. Studies on extracellular vesicles (EVs) have been focused on the direction of a microbial producer (commensal or pathogen) to a host recipient, and largely in the context of the gut microbiome. Here, taking advantage of the simplicity of the human cervicovaginal microbiome, we determined the molecular cargo of EVs produced by L. gasseri and G. vaginalis and examined how these vesicles modulate the interaction of T. vaginalis and host cells. We show that these EVs carry a specific cargo of proteins, which functions can be attributed to the opposite roles that these bacteria play in the vaginal biome. Furthermore, these bacterial EVs are delivered to host and protozoan cells, modulating host-pathogen interactions in a way that mimics the opposite effects that these bacteria have on T. vaginalis pathogenicity. This is the first study to describe side-by-side the protein composition of EVs produced by two bacteria belonging to the opposite spectrum of a microbiome and to demonstrate that these vesicles modulate the pathogenicity of a protozoan parasite. Such as in trichomoniasis, infections and dysbiosis co-occur frequently resulting in significant co-morbidities. Therefore, studies like this provide the knowledge for the development of antimicrobial therapies that aim to clear the infection while restoring a healthy microbiome.

2.
Biochem Soc Trans ; 49(2): 881-891, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33860784

ABSTRACT

Cells from all domains of life release extracellular vesicles (EVs), packages that carry a cargo of molecules that participate in communication, co-ordination of population behaviours, virulence and immune response mechanisms. Mammalian EVs play an increasingly recognised role to fight infection, yet may also be commandeered to disseminate pathogens and enhance infection. EVs released by bacterial pathogens may deliver toxins to host cells, signalling molecules and new DNA to other bacteria, and act as decoys, protecting infecting bacteria from immune killing. In this review, we explore the role of EVs in infection from the perspective of both the pathogen and host, and highlight their importance in the host/pathogen relationship. We highlight proposed strategies for EVs in therapeutics, and call attention to areas where existing knowledge and evidence is lacking.


Subject(s)
Bacteria/immunology , Bacterial Infections/immunology , Extracellular Vesicles/immunology , Signal Transduction/immunology , Animals , Bacteria/metabolism , Bacteria/pathogenicity , Bacterial Infections/metabolism , Bacterial Infections/microbiology , Drug Resistance, Microbial/immunology , Extracellular Vesicles/metabolism , Host-Pathogen Interactions/immunology , Humans , Inflammation/immunology , Inflammation/metabolism , Inflammation/microbiology , Virulence/immunology
3.
Front Mol Biosci ; 7: 580913, 2020.
Article in English | MEDLINE | ID: mdl-33102527

ABSTRACT

Iron restriction in mammals, part of innate antimicrobial defense, may be sensed as a signal by an infecting pathogen. Iron-dependent regulators not only activate the pathogen's specific iron acquisition and storage mechanisms needed for survival but also influence a number of other processes. Bacterial extracellular vesicles (EVs) are a conserved communication mechanism, which can have roles in host colonization, transfer of antimicrobial resistance, modulation of the host's immune response, and biofilm formation. Here we analyze the iron-responsive effect of RNA cargo from Escherichia coli EVs in bladder cells. No differences were found in total RNA quantified from EVs released from representative pathogenic and probiotic strains grown in different iron conditions; nevertheless, lipopolysaccharide (LPS) associated with purified RNA was 10 times greater from EVs derived from the pathogenic strain. The pathogen and probiotic EV-RNA have no substantial toxic effect on the viability of cultured bladder cells, regardless of the iron concentration during bacterial culture. Transcriptomic analysis of bladder cells treated with pathogen EV-RNA delivered in artificial liposomes revealed a gene expression profile with a strong similarity to that of cells treated with liposomes containing LPS alone, with the majority being immune response pathways. EV-RNA from the probiotic strain gave no significant perturbation of gene expression in bladder cells. Cytokine profiling showed that EV-LPS has a role modulating the immune response when internalized by bladder cells, highlighting a key factor that must be considered when evaluating functional studies of bacterial RNA.

4.
Int J Parasitol ; 50(14): 1145-1155, 2020 12.
Article in English | MEDLINE | ID: mdl-32822680

ABSTRACT

Trichomonas vaginalis is a protozoan parasite that causes trichomoniasis, the most prevalent non-viral sexually transmitted infection worldwide. Trichomonas vaginalis releases extracellular vesicles that play a role in parasite:parasite and parasite:host interactions. The aim of this study was to characterise the RNA cargo of these vesicles. Trichomonas vaginalis extracellular vesicles were found to encapsulate a cargo of RNAs of small size. RNA-seq analysis showed that tRNA-derived small RNAs, mostly 5' tRNA halves, are the main type of small RNA in these vesicles. The tRNA-derived small RNAs in T. vaginalis extracellular vesicles were shown to be derived from the specific processing of tRNAs within cells. The specificity of this RNA cargo in T. vaginalis extracellular vesicles suggests a preference for packaging. The RNA cargo of T. vaginalis was shown to be rapidly internalised by human cells via lipid raft-dependent endocytosis. The potential role of these tsRNAs - an emerging class of small RNAs with regulatory functions - on altering host cellular responses requires further examination, suggesting a new mode of parasite:host communication.


Subject(s)
Extracellular Vesicles , RNA, Protozoan , RNA, Transfer , Trichomonas vaginalis , Animals , Endocytosis , Humans , Trichomonas Infections , Trichomonas vaginalis/genetics
5.
Front Microbiol ; 11: 509525, 2020.
Article in English | MEDLINE | ID: mdl-33408695

ABSTRACT

Biofilm infections can be chronic, life threatening and challenging to eradicate. Understanding in vivo stimuli affecting the biofilm cycle is one step toward targeted prevention strategies. Iron restriction by the host is a stimulus for biofilm formation for some Staphylococcus aureus isolates; however, in some infection scenarios bacteria are exposed to abundant amounts of hemoglobin (Hb), which S. aureus is able to use as iron source. Thus, we hypothesized a role for Hb in the biofilm infection. Microplate "biofilm" assays showed biofilm-matrix production was increased in the presence of hemoglobin when compared to the provision of iron as an inorganic salt. Microscopic analysis of biofilms showed that the provision of iron as hemoglobin consistently caused thicker and more structured biofilms when compared to the effect of the inorganic iron source. Iron responsive biofilm gene expression analysis showed that Agr Quorum Sensing, a known biofilm dispersal marker, was repressed with hemoglobin but induced with an equivalent amount of inorganic iron in the laboratory strain Newman. The gene expression of two biofilm structuring agents, PSMα and PSMß, differed in the response to the iron source provided and was not correlated to hemoglobin-structured biofilms. A comparison of the model pathogen S. aureus Newman with local clinical isolates demonstrated that while there was a similar phenotypic biofilm response to hemoglobin, there was substantial variation in the expression of key biofilm dispersal markers, suggesting an underappreciated variation in biofilm regulome among S. aureus isolates and that no general inferences can be made by studying the behavior of single strains.

6.
J Extracell Vesicles ; 8(1): 1632099, 2019.
Article in English | MEDLINE | ID: mdl-31275533

ABSTRACT

Bacteria release nano-sized extracellular vesicles (EVs) into the extracellular milieu. Bacterial EVs contain molecular cargo originating from the parent bacterium and have important roles in bacterial survival and pathogenesis. Using 8-plex iTRAQ approaches, we profiled the EV proteome of two Escherichia coli strains, uropathogenic (UPEC) 536 and probiotic Nissle 1917. For these strains, we compared the proteome of crude input EVs prepared by ultracentrifugation alone with EVs purified by either density gradient centrifugation (DGC) or size exclusion chromatography (SEC). We further compared the proteome of EVs from bacterial cultures that were grown in iron-restricted (R) and iron-supplemented (RF) conditions. Overall, outer membrane components were highly enriched, and bacterial inner membrane components were significantly depleted in both UPEC and Nissle EVs, in keeping with an outer membrane origin. In addition, we found enrichment of ribosome-related Gene Ontology terms in UPEC EVs and proteins involved in glycolytic processes and ligase activity in Nissle EVs. We have identified that three proteins (RbsB of UPEC in R; YoeA of UPEC in RF; BamA of Nissle in R) were consistently enriched in the DGC- and SEC-purified EV samples in comparison to their crude input EV, whereas conversely the 60 kDa chaperonin GroEL was enriched in the crude input EVs for both UPEC and Nissle in R condition. Such proteins may have utility as technical markers for assessing the purity of E. coli EV preparations. Several proteins were changed in their abundance depending on the iron availability in the media. Data are available via ProteomeXchange with identifier PXD011345. In summary, we have undertaken a comprehensive characterization of the protein content of E. coli EVs and found evidence of specific EV cargos for physiological activity and conserved protein cargo that may find utility as markers in the future. Abbreviation: DGC: density gradient centrifugation; DTT: 1,4-dithiothreitol; EV: extracellular vesicles; FDR: false discovery rate; GO: Gene Ontology; R: iron-restricted; RF: iron-supplemented; iTRAQ: isobaric tags for relative and absolute quantitation; OMV: outer membrane vesicle; SWATH-MS: sequential window acquisition of all theoretical mass spectra; SEC: size exclusion chromatography.

7.
FEMS Microbiol Lett ; 365(5)2018 03 01.
Article in English | MEDLINE | ID: mdl-29390056

ABSTRACT

Bacteria secrete RNAs, some of which have effects on other cells and on other species as signalling RNAs. Prokaryotic membrane vesicles (MVs) contain a range of RNA types. The MV structure offers protection from degradation as well as receptors to facilitate delivery to target cells. Microscopic imaging and molecular biology analyses have provided evidence to demonstrate that bacterial MVs deliver their RNA into eukaryotic cells. Moreover, in some cases the RNA cargo is demonstrably functional and phenotypic changes can be identified in MV-RNA treated target cells. The challenge now is to dissect the effect of MV-RNA on target cells away from the effects of non-RNA components of the MV such as lipopolysaccharide that can co-purify with RNA.


Subject(s)
Bacteria/cytology , Bacteria/genetics , Extracellular Vesicles/chemistry , RNA, Bacterial/metabolism , RNA, Untranslated/metabolism , Bacteria/metabolism , Bacterial Infections/microbiology , Biological Transport , Eukaryotic Cells/microbiology , Extracellular Vesicles/metabolism , RNA, Bacterial/genetics , RNA, Untranslated/genetics , Signal Transduction
8.
J Extracell Vesicles ; 6(1): 1324731, 2017.
Article in English | MEDLINE | ID: mdl-28717421

ABSTRACT

Prokaryotes release membrane vesicles (MVs) with direct roles in disease pathogenesis. MVs are heterogeneous when isolated from bacterial cultures so Density Gradient Centrifugation (DGC) is valuable for separation of MV subgroups from contaminating material. Here we report the technical variability and natural biological heterogeneity seen between DGC preparations of MVs for Mycobacterium smegmatis and Escherichia coli and compare these DGC data with size exclusion chromatography (SEC) columns. Crude preparations of MVs, isolated from cultures by ultrafiltration and ultracentrifugation were separated by DGC with fractions manually collected as guided by visible bands. Yields of protein, RNA and endotoxin, protein banding and particle counts were analysed in these. DGC and SEC methods enabled separation of molecularly distinct MV populations from crude MVs. DGC banding profiles were unique for each of the two species of bacteria tested and further altered by changing culture conditions, for example with iron supplementation. SEC is time efficient, reproducible and cost effective method that may also allow partial LPS removal from Gram-negative bacterial MVs. In summary, both DGC and SEC are suitable for the separation of mixed populations of MVs and we advise trials of both, coupled with complete molecular and single vesicle characterisation prior to downstream experimentation.

9.
Wound Repair Regen ; 25(1): 51-61, 2017 01.
Article in English | MEDLINE | ID: mdl-27868332

ABSTRACT

Maggots, through their excretions and secretions (ES), promote wound healing by removing necrotic tissue, counter bacterial infection, and activate wound associated cells. We investigated the effects of a physiological dose of maggot ES on four wound-associated cell types in vitro with Affymetrix gene expression arrays; keratinocytes, endothelial cells, fibroblasts, and monocytes. Keratinocytes showed the fewest (n = 5; p < 0.05, fold-change ±2) and smallest fold-changes (up to 2.32×) in gene expression and conversely THP1 monocytes had the most (n = 233) and greatest magnitude (up to 44.3×). There were no genes that were altered in all four cell-lines. Gene pathway analysis identified an enrichment of immune response pathways in three of the treated cell-lines. Analyses by quantitative RT-PCR found many genes dynamically expressed in ES dose dependent manner during the three day treatments. Phenotype analyses, however, found no effects of ES on cell viability, proliferation, migration and angiogenesis. ES was 100× less potent at triggering IL-8 secretion than fibroblasts treated with purified bacterial lipopolysaccharide (LPS; in equivalent amounts to that found in ES; ∼40 EU/ml). Furthermore, co-treatment with LPS and ES decreased the LPS-alone triggered IL-8 secretion by 13%. Although ES had no direct effect on wound cell phenotypes it did partially reduce the immune response to bacterial LPS exposure. These observations were consistent with the profile of transcriptional responses that were dominated by modulation of immune response genes. Maggot therapy may therefore improve wound healing through the secondary effects of these gene changes in the wound cells.


Subject(s)
Diptera , Endothelial Cells/physiology , Fibroblasts/physiology , Keratinocytes/physiology , Larva/metabolism , Monocytes/physiology , Wound Healing/genetics , Animals , Bodily Secretions/metabolism , Cell Line , Cells, Cultured , Gene Expression Profiling , In Vitro Techniques , Larva/physiology , Transcription, Genetic/physiology , Wound Healing/immunology
10.
Sci Prog ; 97(Pt 4): 371-82, 2014.
Article in English | MEDLINE | ID: mdl-25638949

ABSTRACT

Iron is an essential micronutrient for microbial life. At the start of an infection the host environment will normally restrict available iron, and innate immune responses will aim to further reduce iron, thus inhibiting growth of potential pathogens. Successful pathogens have developed a variety of mechanisms to acquire iron from the available in vivo sources, using remote and direct capture, to render their environment iron replete. Iron restriction, and the presence of host iron sources like haem, are important drivers of gene regulation controlling the expression of numerous virulence factors. As an infection progresses the changing iron environment will therefore influence pathogen gene expression and trigger new activities. Understanding how bacteria acquire iron, and how iron acquisition affects the bacteria, has identified vaccine and antibiotic drug targets and is now suggesting novel approaches to control and treat infection.


Subject(s)
Bacteria , Bacterial Infections/metabolism , Homeostasis/physiology , Immunity, Innate , Iron/metabolism , Bacteria/metabolism , Bacteria/pathogenicity , Bacterial Infections/immunology , Bacterial Infections/microbiology , Homeostasis/genetics , Humans , Immunity, Innate/genetics , Metabolic Networks and Pathways/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...