Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37511046

ABSTRACT

Until recently, it has been generally held that stable angina pectoris (SAP) primarily reflects the presence of epicardial coronary artery stenoses due to atheromatous plaque(s), while acute myocardial infarction (AMI) results from thrombus formation on ruptured plaques. This concept is now challenged, especially by results of the ORBITA and ISCHEMIA trials, which showed that angioplasty/stenting does not substantially relieve SAP symptoms or prevent AMI or death in such patients. These disappointing outcomes serve to redirect attention towards anomalies of small coronary physiology. Recent studies suggest that coronary microvasculature is often both structurally and physiologically abnormal irrespective of the presence or absence of large coronary artery stenoses. Structural remodelling of the coronary microvasculature appears to be induced primarily by inflammation initiated by mast cell, platelet, and neutrophil activation, leading to erosion of the endothelial glycocalyx. This leads to the disruption of laminar flow and the facilitation of endothelial platelet interaction. Glycocalyx shedding has been implicated in the pathophysiology of coronary artery spasm, cardiovascular ageing, AMI, and viral vasculitis. Physiological dysfunction is closely linked to structural remodelling and occurs in most patients with myocardial ischemia, irrespective of the presence or absence of large-vessel stenoses. Dysfunction includes the impairment of platelet and vascular responsiveness to autocidal coronary vasodilators, such as nitric oxide, prostacyclin, and hydrogen sulphide, and predisposes both to coronary vasoconstriction and to a propensity for microthrombus formation. These findings emphasise the need for new directions in medical therapeutics for patients with SAP, as well as a wide range of other cardiovascular disorders.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Myocardial Infarction , Myocardial Ischemia , Thrombosis , Humans , Angina Pectoris , Coronary Vessels
2.
Eur J Heart Fail ; 17(5): 475-83, 2015 May.
Article in English | MEDLINE | ID: mdl-25684282

ABSTRACT

AIMS: The release of the B-type natriuretic peptide (BNP) is increased in heart failure (HF), a condition associated with oxidative stress. BNP is known to exert anti-inflammatory effects including suppression of neutrophil superoxide (O2(-)) release. However, BNP-based restoration of homeostasis in HF is inadequate, and the equivocal clinical benefit of a recombinant BNP, nesiritide, raises the possibility of attenuated response to BNP. We therefore tested the hypothesis that BNP-induced suppression of neutrophil O2(-) generation is impaired in patients with acute HF. METHODS AND RESULTS: We have recently characterized suppression of neutrophil O2(-) generation (PMA- or fMLP-stimulated neutrophil burst) by BNP as a measure of its physiological activity. In the present study, BNP response was compared in neutrophils of healthy subjects (n = 29) and HF patients (n = 45). Effects of BNP on fMLP-induced phosphorylation of the NAD(P)H oxidase subunit p47phox were also evaluated. In acute HF patients, the suppressing effect of BNP (1 µmol/L) on O2(-) generation was attenuated relative to that in healthy subjects (P < 0.05 for both PMA and fMLP). Analogously, BNP inhibited p47phox phosphorylation in healthy subjects but not in HF patients (P < 0.05). However, O2(-)-suppressing effects of the cell-permeable cGMP analogue (8-pCPT-cGMP) were preserved in acute HF. Conventional HF treatment for 5 weeks partially restored neutrophil BNP responsiveness (n = 25, P < 0.05), despite no significant decrease in plasma NT-proBNP levels. CONCLUSIONS: BNP inhibits neutrophil O2(-) generation by suppressing NAD(P)H oxidase assembly. This effect is impaired in acute HF patients, with partial recovery during treatment.


Subject(s)
Heart Failure/blood , Natriuretic Agents/pharmacology , Natriuretic Peptide, Brain/pharmacology , Neutrophils/drug effects , Superoxides/metabolism , Adult , Aged , Drug Resistance , Female , Humans , Male , Middle Aged , N-Formylmethionine Leucyl-Phenylalanine/metabolism , NADPH Oxidases/metabolism , Neutrophils/enzymology , Oxidation-Reduction , Phosphorylation , Reactive Oxygen Species/blood
3.
Nitric Oxide ; 40: 36-44, 2014 Aug 31.
Article in English | MEDLINE | ID: mdl-24858215

ABSTRACT

Previous studies in non-human blood vessels and in platelets have demonstrated that under hypoxic conditions release of NO from nitrite (NO2(-)) is potentiated by deoxyhaemoglobin. In the current study, we characterized hypoxic potentiation of NO2(-) effects in human vasculature and platelets in vitro, addressing underlying mechanisms. The vasodilator efficacy of NO2(-), in comparison with glyceryl trinitrate (GTN), was evaluated in vitro, using segments of human saphenous vein. Under hypoxic conditions, there was a leftward shift of the NO2(-) concentration-response curve (EC50: 22 µM in hyperoxia vs 3.5 µM in hypoxia; p<0.01), but no significant potentiation of GTN effect. In the presence of red blood cells, hypoxic potentiation of NO2(-) vasodilator effect was accentuated. In whole blood samples and platelet-rich plasma (PRP) we assessed inhibition of platelet aggregation by NO2(-) (1mM), in comparison with that of sodium nitroprusside (SNP, 10 µM). In individual subjects (n=37), there was a strong correlation (r=0.75, p<0.0001) between anti-aggregatory effects of NO2(-) and SNP in whole blood, signifying that resultant sGC activation underlies biological effect and responses to NO2(-) are diminished in the presence of NO resistance. In PRP, the effects of NO2(-) were less pronounced than in whole blood (p=0.0001), suggesting an important role of Hb (within RBCs) in the bioconversion of NO2(-) to NO. Inhibition of platelet aggregation by NO2(-) was almost 3-fold greater in venous than in arterial blood (p<0.0001), and deoxyHb concentration directly correlated (r=0.69, p=0.013) with anti-aggregatory response. Incremental hypoxia applied to venous blood samples (in hypoxic chamber) caused a progressive increase in both deoxyHb level and anti-aggregatory effect of NO2(-). When subjects inhaled a 12% O2 mixture for 20 min, there was a 3-fold rise in blood deoxyHb fraction (p<0.01). In PRP, response to NO2(-) also increased under hypoxia, and was further enhanced (p<0.01) by deoxyHb. Furthermore, deoxyHb exerted significant anti-aggregatory effects even in the absence of added NO2(-), suggesting a role for endogenous NO2(-). The results of this work provide further mechanistic insights into hypoxic potentiation of vasodilator and anti-aggregatory actions of NO2(-). In human saphenous veins and blood, the balance of evidence suggests differential rates of NO release from NO2(-) (largely modulated by deoxyHb) as the fundamental mechanism.


Subject(s)
Blood Platelets/drug effects , Blood Vessels/drug effects , Nitrites/pharmacology , Platelet Aggregation/drug effects , Adult , Aged , Dose-Response Relationship, Drug , Female , Humans , Hyperoxia , Male , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...