Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Plant Cell ; 35(9): 3444-3469, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37260348

ABSTRACT

In leaves of C3 and C4 plants, stomata open during the day to favor CO2 entry for photosynthesis and close at night to prevent inefficient transpiration of water vapor. The circadian clock paces rhythmic stomatal movements throughout the diel (24-h) cycle. Leaf transitory starch is also thought to regulate the diel stomatal movements, yet the underlying mechanisms across time (key moments) and space (relevant leaf tissues) remain elusive. Here, we developed PhenoLeaks, a pipeline to analyze the diel dynamics of transpiration, and used it to screen a series of Arabidopsis (Arabidopsis thaliana) mutants impaired in starch metabolism. We detected a sinusoidal, endogenous rhythm of transpiration that overarches days and nights. We determined that a number of severe mutations in starch metabolism affect the endogenous rhythm through a phase shift, resulting in delayed stomatal movements throughout the daytime and diminished stomatal preopening during the night. Nevertheless, analysis of tissue-specific mutations revealed that neither guard-cell nor mesophyll-cell starch metabolisms are strictly required for normal diel patterns of transpiration. We propose that leaf starch influences the timing of transpiration rhythm through an interplay between the circadian clock and sugars across tissues, while the energetic effect of starch-derived sugars is usually nonlimiting for endogenous stomatal movements.


Subject(s)
Arabidopsis , Plant Stomata , Plant Stomata/metabolism , Plant Leaves/metabolism , Carbohydrate Metabolism , Photosynthesis , Arabidopsis/metabolism , Starch/metabolism
2.
Sci Rep ; 11(1): 24103, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34916537

ABSTRACT

Changes in plant abiotic environments may alter plant virus epidemiological traits, but how such changes actually affect their quantitative relationships is poorly understood. Here, we investigated the effects of water deficit on Cauliflower mosaic virus (CaMV) traits (virulence, accumulation, and vectored-transmission rate) in 24 natural Arabidopsis thaliana accessions grown under strictly controlled environmental conditions. CaMV virulence increased significantly in response to water deficit during vegetative growth in all A. thaliana accessions, while viral transmission by aphids and within-host accumulation were significantly altered in only a few. Under well-watered conditions, CaMV accumulation was correlated positively with CaMV transmission by aphids, while under water deficit, this relationship was reversed. Hence, under water deficit, high CaMV accumulation did not predispose to increased horizontal transmission. No other significant relationship between viral traits could be detected. Across accessions, significant relationships between climate at collection sites and viral traits were detected but require further investigation. Interactions between epidemiological traits and their alteration under abiotic stresses must be accounted for when modelling plant virus epidemiology under scenarios of climate change.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/virology , Caulimovirus/pathogenicity , Climate Change , Plant Diseases/virology , Stress, Physiological , Virulence , Water , Animals , Aphids/physiology , Aphids/virology , Arabidopsis/parasitology , Environment
3.
New Phytol ; 232(6): 2295-2307, 2021 12.
Article in English | MEDLINE | ID: mdl-34617285

ABSTRACT

The formation of Casparian strips (CS) and the deposition of suberin at the endodermis of plant roots are thought to limit the apoplastic transport of water and ions. We investigated the specific role of each of these apoplastic barriers in the control of hydro-mineral transport by roots and the consequences on shoot growth. A collection of Arabidopsis thaliana mutants defective in suberin deposition and/or CS development was characterized under standard conditions using a hydroponic system and the Phenopsis platform. Mutants altered in suberin deposition had enhanced root hydraulic conductivity, indicating a restrictive role for this compound in water transport. In contrast, defective CS directly increased solute leakage and indirectly reduced root hydraulic conductivity. Defective CS also led to a reduction in rosette growth, which was partly dependent on the hydro-mineral status of the plant. Ectopic suberin was shown to partially compensate for defective CS phenotypes. Altogether, our work shows that the functionality of the root apoplastic diffusion barriers greatly influences the plant physiology, and that their integrity is tightly surveyed.


Subject(s)
Arabidopsis , Water , Arabidopsis/genetics , Cell Wall , Lipids , Plant Roots
4.
PLoS Pathog ; 16(5): e1008557, 2020 05.
Article in English | MEDLINE | ID: mdl-32413076

ABSTRACT

Plant virus pathogenicity is expected to vary with changes in the abiotic environment that affect plant physiology. Conversely, viruses can alter the host plant response to additional stimuli from antagonism to mutualism depending on the virus, the host plant and the environment. Ecological theory, specifically the CSR framework of plant strategies developed by Grime and collaborators, states that plants cannot simultaneously optimize resistance to both water deficit and pathogens. Here, we investigated the vegetative and reproductive performance of 44 natural accessions of A. thaliana originating from the Iberian Peninsula upon simultaneous exposure to soil water deficit and viral infection by the Cauliflower mosaic virus (CaMV). Following the predictions of Grime's CSR theory, we tested the hypothesis that the ruderal character of a plant genotype is positively related to its tolerance to virus infection regardless of soil water availability. Our results showed that CaMV infection decreased plant vegetative performance and annihilated reproductive success of all accessions. In general, water deficit decreased plant performance, but, despite differences in behavior, ranking of accessions tolerance to CaMV was conserved under water deficit. Ruderality, quantified from leaf traits following a previously published procedure, varied significantly among accessions, and was positively correlated with tolerance to viral infection under both well-watered and water deficit conditions, although the latter to a lesser extent. Also, in accordance with the ruderal character of the accession and previous findings, our results suggest that accession tolerance to CaMV infection is positively correlated with early flowering. Finally, plant survival to CaMV infection increased under water deficit. The complex interactions between plant, virus and abiotic environment are discussed in terms of the variation in plant ecological strategies at the intraspecific level.


Subject(s)
Arabidopsis , Caulimovirus , Genetic Variation , Genotype , Plant Diseases , Arabidopsis/genetics , Arabidopsis/virology , Dehydration/genetics , Dehydration/virology , Plant Diseases/genetics , Plant Diseases/virology
5.
Plants (Basel) ; 8(10)2019 Oct 12.
Article in English | MEDLINE | ID: mdl-31614737

ABSTRACT

It is clearly established that there is not a unique response to soil water deficit but that there are as many responses as soil water deficit characteristics: Drought intensity, drought duration, and drought position during plant cycle. For a same soil water deficit, responses can also differ on plant genotype within a same species. In spite of this variability, at least for leaf production and expansion processes, robust tendencies can be extracted from the literature when similar watering regimes are compared. Here, we present response curves and multi-scale dynamics analyses established on tomato plants exposed to different soil water deficit treatments. Results reinforce the trends already observed for other species: Reduction in plant leaf biomass under water stress was due to reduction in individual leaf biomass and areas whereas leaf production and specific leaf area were not affected. The dynamics of leaf expansion was modified both at the leaf and cell scales. Cell division and expansion were reduced by drought treatments as well as the endoreduplication process. Combining response curves analyses together with dynamic analyses of tomato compound leaf growth at different scales not only corroborate results on simple leaf responses to drought but also increases our knowledge on the cellular mechanisms behind leaf growth plasticity.

6.
Ann Bot ; 122(7): 1173-1185, 2018 12 31.
Article in English | MEDLINE | ID: mdl-29982438

ABSTRACT

Background and Aims: The question of which cellular mechanisms determine the variation in leaf size has been addressed mainly in plants with simple leaves. It is addressed here in tomato taking into consideration the expected complexity added by the several lateral appendages making up the compound leaf, the leaflets. Methods: Leaf and leaflet areas, epidermal cell number and areas, and endoreduplication (co-) variations were analysed in Solanum lycopersicum considering heteroblastic series in a wild type (Wva106) and an antisense mutant, the Pro35S:Slccs52AAS line, and upon drought treatments. All plants were grown in an automated phenotyping platform, PHENOPSIS, adapted to host plants grown in 7 L pots. Key Results: Leaf area, leaflet area and cell number increased with leaf rank until reaching a plateau. In contrast, cell area slightly decreased and endoreduplication did not follow any trend. In the transgenic line, leaf area, leaflet areas and cell number of basal leaves were lower than in the wild type, but higher in upper leaves. Reciprocally, cell area was higher in basal leaves and lower in upper leaves. When scaled up at the whole sympodial unit, all these traits did not differ significantly between the transgenic line and the wild type. In response to drought, leaf area was reduced, with a clear dose effect that was also reported for all size-related traits, including endoreduplication. Conclusions: These results provide evidence that all leaflets have the same cellular phenotypes as the leaf they belong to. Consistent with results reported for simple leaves, they show that cell number rather than cell size determines the final leaf areas and that endoreduplication can be uncoupled from leaf and cell sizes. Finally, they re-question a whole-plant control of cell division and expansion in leaves when the Wva106 and the Pro35S:Slccs52AAS lines are compared.


Subject(s)
Plant Leaves/physiology , Solanum lycopersicum/physiology , Genes, Plant/physiology , Solanum lycopersicum/anatomy & histology , Plant Leaves/anatomy & histology
7.
Front Plant Sci ; 9: 703, 2018.
Article in English | MEDLINE | ID: mdl-29881396

ABSTRACT

Plants suffer from a broad range of abiotic and biotic stresses that do not occur in isolation but often simultaneously. Productivity of natural and agricultural systems is frequently constrained by water limitation, and the frequency and duration of drought periods will likely increase due to global climate change. In addition, phytoviruses represent highly prevalent biotic threat in wild and cultivated plant species. Several hints support a modification of epidemiological parameters of plant viruses in response to environmental changes but a clear quantification of plant-virus interactions under abiotic stresses is still lacking. Here we report the effects of a water deficit on epidemiological parameters of Cauliflower mosaic virus (CaMV), a non-circulative virus transmitted by aphid vectors, in nine natural accessions of Arabidopsis thaliana with known contrasted responses to water deficit. Plant growth-related traits and virus epidemiological parameters were evaluated in PHENOPSIS, an automated high throughput phenotyping platform. Water deficit had contrasted effects on CaMV transmission rate and viral load among A. thaliana accessions. Under well-watered conditions, transmission rate tended to increase with viral load and with CaMV virulence across accessions. Under water deficit, transmission rate and virulence were negatively correlated. Changes in the rate of transmission under water deficit were not related to changes in viral load. Our results support the idea that optimal virulence of a given virus, as hypothesized under the transmission-virulence trade-off, is highly dependent on the environment and growth traits of the host.

8.
Bio Protoc ; 8(4): e2739, 2018 Feb 20.
Article in English | MEDLINE | ID: mdl-34179267

ABSTRACT

High-throughput phenotyping of plant traits is a powerful tool to further our understanding of plant growth and its underlying physiological, molecular, and genetic determinisms. This protocol describes the methodology of a standard phenotyping experiment in PHENOPSIS automated platform, which was engineered in INRA-LEPSE (https://www6.montpellier.inra.fr/lepse) and custom-made by Optimalog company. The seminal method was published by Granier et al. (2006). The platform is used to explore and test various ecophysiological hypotheses (Tisné et al., 2010; Baerenfaller et al., 2012; Vile et al., 2012; Bac-Molenaar et al., 2015; Rymaszewski et al., 2017). Here, the focus concerns the preparation and management of experiments, as well as measurements of growth-related traits (e.g., projected rosette area, total leaf area and growth rate), water status-related traits (e.g., leaf dry matter content and relative water content), and plant architecture-related traits (e.g., stomatal density and index and lamina/petiole ratio). Briefly, a completely randomized (block) design is set up in the growth chamber. Next, the substrate is prepared, its initial water content is measured and pots are filled. Seeds are sown onto the soil surface and germinated prior to the experiment. After germination, soil watering and image (visible, infra-red, fluorescence) acquisition are planned by the user and performed by the automaton. Destructive measurements may be performed during the experiment. Data extraction from images and estimation of growth-related trait values involves semi-automated procedures and statistical processing.

9.
Plant Methods ; 13: 98, 2017.
Article in English | MEDLINE | ID: mdl-29151844

ABSTRACT

BACKGROUND: Plant science uses increasing amounts of phenotypic data to unravel the complex interactions between biological systems and their variable environments. Originally, phenotyping approaches were limited by manual, often destructive operations, causing large errors. Plant imaging emerged as a viable alternative allowing non-invasive and automated data acquisition. Several procedures based on image analysis were developed to monitor leaf growth as a major phenotyping target. However, in most proposals, a time-consuming parameterization of the analysis pipeline is required to handle variable conditions between images, particularly in the field due to unstable light and interferences with soil surface or weeds. To cope with these difficulties, we developed a low-cost, 2D imaging method, hereafter called PYM. The method is based on plant leaf ability to absorb blue light while reflecting infrared wavelengths. PYM consists of a Raspberry Pi computer equipped with an infrared camera and a blue filter and is associated with scripts that compute projected leaf area. This new method was tested on diverse species placed in contrasting conditions. Application to field conditions was evaluated on lettuces grown under photovoltaic panels. The objective was to look for possible acclimation of leaf expansion under photovoltaic panels to optimise the use of solar radiation per unit soil area. RESULTS: The new PYM device proved to be efficient and accurate for screening leaf area of various species in wide ranges of environments. In the most challenging conditions that we tested, error on plant leaf area was reduced to 5% using PYM compared to 100% when using a recently published method. A high-throughput phenotyping cart, holding 6 chained PYM devices, was designed to capture up to 2000 pictures of field-grown lettuce plants in less than 2 h. Automated analysis of image stacks of individual plants over their growth cycles revealed unexpected differences in leaf expansion rate between lettuces rows depending on their position below or between the photovoltaic panels. CONCLUSIONS: The imaging device described here has several benefits, such as affordability, low cost, reliability and flexibility for online analysis and storage. It should be easily appropriated and customized to meet the needs of various users.

10.
Plant Physiol ; 174(3): 1913-1930, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28522456

ABSTRACT

Acclimation to water deficit (WD) enables plants to maintain growth under unfavorable environmental conditions, although the mechanisms are not completely understood. In this study, the natural variation of long-term acclimation to moderate and severe soil WD was investigated in 18 Arabidopsis (Arabidopsis thaliana) accessions using PHENOPSIS, an automated phenotyping platform. Soil water content was adjusted at an early stage of plant development and maintained at a constant level until reproductive age was achieved. The accessions were selected based on the expression levels of ANNEXIN1, a drought-related marker. Severe WD conditions had a greater effect on most of the measured morphophysiological traits than moderate WD conditions. Multivariate analyses indicated that trait responses associated with plant size and water management drove most of the variation. Accessions with similar responses at these two levels were grouped in clusters that displayed different response strategies to WD The expression levels of selected stress-response genes revealed large natural variation under WD conditions. Responses of morphophysiological traits, such as projected rosette area, transpiration rate, and rosette water content, were correlated with changes in the expression of stress-related genes, such as NINE-CIS-EPOXYCAROTENOID DIOXYGENASE3 and N-MYC DOWNREGULATED-LIKE1 (NDL1), in response to WD Interestingly, the morphophysiological acclimation response to WD also was reflected in the gene expression levels (most notably those of NDL1, CHALCONE SYNTHASE, and MYB DOMAIN PROTEIN44) in plants cultivated under well-watered conditions. Our results may lead to the development of biomarkers and predictors of plant morphophysiological responses based on gene expression patterns.


Subject(s)
Arabidopsis/anatomy & histology , Arabidopsis/physiology , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Water/physiology , Arabidopsis/genetics , Ecotype , Phenotype , Plant Transpiration/genetics , Principal Component Analysis , Soil
11.
J Biol Chem ; 291(12): 6521-33, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-26801610

ABSTRACT

The regulation of the GORK (Guard Cell Outward Rectifying) Shaker channel mediating a massive K(+) efflux in Arabidopsis guard cells by the phosphatase AtPP2CA was investigated. Unlike the gork mutant, the atpp2ca mutants displayed a phenotype of reduced transpiration. We found that AtPP2CA interacts physically with GORK and inhibits GORK activity in Xenopus oocytes. Several amino acid substitutions in the AtPP2CA active site, including the dominant interfering G145D mutation, disrupted the GORK-AtPP2CA interaction, meaning that the native conformation of the AtPP2CA active site is required for the GORK-AtPP2CA interaction. Furthermore, two serines in the GORK ankyrin domain that mimic phosphorylation (Ser to Glu) or dephosphorylation (Ser to Ala) were mutated. Mutations mimicking phosphorylation led to a significant increase in GORK activity, whereas mutations mimicking dephosphorylation had no effect on GORK. In Xenopus oocytes, the interaction of AtPP2CA with "phosphorylated" or "dephosphorylated" GORK systematically led to inhibition of the channel to the same baseline level. Single-channel recordings indicated that the GORK S722E mutation increases the open probability of the channel in the absence, but not in the presence, of AtPP2CA. The dephosphorylation-independent inactivation mechanism of GORK by AtPP2CA is discussed in relation with well known conformational changes in animal Shaker-like channels that lead to channel opening and closing. In plants, PP2C activity would control the stomatal aperture by regulating both GORK and SLAC1, the two main channels required for stomatal closure.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis Proteins/physiology , Arabidopsis/enzymology , Phosphoprotein Phosphatases/physiology , Potassium Channels/metabolism , Amino Acid Sequence , Animals , Cells, Cultured , Genes, Dominant , Membrane Potentials , Molecular Mimicry , Molecular Sequence Data , Mutation, Missense , Phosphorylation , Plant Transpiration , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational , Two-Hybrid System Techniques , Xenopus laevis
12.
Funct Plant Biol ; 44(1): 35-45, 2016 Feb.
Article in English | MEDLINE | ID: mdl-32480544

ABSTRACT

Following the recent development of high-throughput phenotyping platforms for plant research, the number of individual plants grown together in a same experiment has raised, sometimes at the expense of pot size. However, root restriction in excessively small pots affects plant growth and carbon partitioning, and may interact with other stresses targeted in these experiments. In work reported here, we investigated the interactive effects of pot size and soil water deficit on multiple growth-related traits from the cellular to the whole-plant scale in oilseed rape (Brassica napus L.). The effects of pot size on responses to water deficit and allometric relationships revealed strong, multilevel interactions between pot size and watering regime. Notably, water deficit increased the root:shoot ratio in large pots, but not in small pots. At the cellular scale, water deficit decreased epidermal leaf cell area in large pots, but not in small pots. These results were consistent with changes in the level of endoreduplication factor in leaf cells. Our study illustrates the disturbing interaction of pot size with water deficit and raises the need to carefully consider this factor in the frame of the current development of high-throughput phenotyping experiments.

13.
Plant Methods ; 11: 23, 2015.
Article in English | MEDLINE | ID: mdl-25870650

ABSTRACT

BACKGROUND: Effects of abiotic and biotic stresses on plant photosynthetic performance lead to fitness and yield decrease. The maximum quantum efficiency of photosystem II (F v/F m) is a parameter of chlorophyll fluorescence (ChlF) classically used to track changes in photosynthetic performance. Despite recent technical and methodological advances in ChlF imaging, the spatio-temporal heterogeneity of F v/F m still awaits for standardized and accurate quantification. RESULTS: We developed a method to quantify the dynamics of spatial heterogeneity of photosynthetic efficiency through the distribution-based analysis of F v/F m values. The method was applied to Arabidopsis thaliana grown under well-watered and severe water deficit (survival rate of 40%). First, whole-plant F v/F m shifted from unimodal to bimodal distributions during plant development despite a constant mean F v/F m under well-watered conditions. The establishment of a bimodal distribution of F v/F m reflects the occurrence of two types of leaf regions with contrasted photosynthetic efficiency. The distance between the two modes (called S) quantified the whole-plant photosynthetic heterogeneity. The weighted contribution of the most efficient/healthiest leaf regions to whole-plant performance (called W max) quantified the spatial efficiency of a photosynthetically heterogeneous plant. Plant survival to water deficit was associated to high S values, as well as with strong and fast recovery of W max following soil rewatering. Hence, during stress surviving plants had higher, but more efficient photosynthetic heterogeneity compared to perishing plants. Importantly, S allowed the discrimination between surviving and perishing plants four days earlier than the mean F v/F m. A sensitivity analysis from simulated dynamics of F v/F m showed that parameters indicative of plant tolerance and/or stress intensity caused identifiable changes in S and W max. Finally, an independent comparison of six Arabidopsis accessions grown under well-watered conditions indicated that S and W max are related to the genetic variability of growth. CONCLUSIONS: The distribution-based analysis of ChlF provides an efficient tool for quantifying photosynthetic heterogeneity and performance. S and W max are good indicators to estimate plant survival under water stress. Our results suggest that the dynamics of photosynthetic heterogeneity are key components of plant growth and tolerance to stress.

14.
J Exp Bot ; 65(22): 6457-69, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25246443

ABSTRACT

How genetic factors control plant performance under stressful environmental conditions is a central question in ecology and for crop breeding. A multivariate framework was developed to examine the genetic architecture of performance-related traits in response to interacting environmental stresses. Ecophysiological and life history traits were quantified in the Arabidopsis thaliana Ler × Cvi mapping population exposed to constant soil water deficit and high air temperature. The plasticity of the genetic variance-covariance matrix (G-matrix) was examined using mixed-effects models after regression into principal components. Quantitative trait locus (QTL) analysis was performed on the predictors of genotype effects and genotype by environment interactions (G × E). Three QTLs previously identified for flowering time had antagonistic G × E effects on carbon acquisition and the other traits (phenology, growth, leaf morphology, and transpiration). This resulted in a size-dependent response of water use efficiency (WUE) to high temperature but not soil water deficit, indicating that most of the plasticity of carbon acquisition and WUE to temperature is controlled by the loci that control variation of development, size, growth, and transpiration. A fourth QTL, MSAT2.22, controlled the response of carbon acquisition to specific combinations of watering and temperature irrespective of plant size and development, growth, and transpiration rate, which resulted in size-independent plasticity of WUE. These findings highlight how the strategies to optimize plant performance may differ in response to water deficit and high temperature (or their combination), and how different G × E effects could be targeted to improve plant tolerance to these stresses.


Subject(s)
Adaptation, Physiological/genetics , Arabidopsis/genetics , Arabidopsis/physiology , Temperature , Water , Alleles , Ecotype , Environment , Factor Analysis, Statistical , Gene-Environment Interaction , Genotype , Models, Biological , Multivariate Analysis , Phenotype , Plant Development/genetics , Principal Component Analysis , Quantitative Trait Loci/genetics
15.
PLoS One ; 9(9): e107607, 2014.
Article in English | MEDLINE | ID: mdl-25226036

ABSTRACT

Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR) are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm), was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.


Subject(s)
Adaptation, Physiological , Arabidopsis/microbiology , Arabidopsis/physiology , Phyllobacteriaceae , Stress, Physiological , Symbiosis , Biomass , Photosynthesis , Water
16.
Biomed Res Int ; 2014: 548254, 2014.
Article in English | MEDLINE | ID: mdl-25025059

ABSTRACT

Inorganic phosphate (Pi) and Zinc (Zn) are essential nutrients for normal plant growth. Interaction between these elements has been observed in many crop plants. Despite its agronomic importance, the biological significance and genetic basis of this interaction remain largely unknown. Here we examined the Pi/Zn interaction in two lettuce (Lactuca sativa) varieties, namely, "Paris Island Cos" and "Kordaat." The effects of variation in Pi and Zn supply were assessed on biomass and photosynthesis for each variety. Paris Island Cos displayed better growth and photosynthesis compared to Kordaat under all the conditions tested. Correlation analysis was performed to determine the interconnectivity between Pi and Zn intracellular contents in both varieties. Paris Island Cos showed a strong negative correlation between the accumulation levels of Pi and Zn in shoots and roots. However, no relation was observed for Kordaat. The increase of Zn concentration in the medium causes a decrease in dynamics of Pi transport in Paris Island Cos, but not in Kordaat plants. Taken together, results revealed a contrasting behavior between the two lettuce varieties in terms of the coregulation of Pi and Zn homeostasis and provided evidence in favor of a genetic basis for the interconnection of these two elements.


Subject(s)
Lactuca/metabolism , Phosphates/metabolism , Zinc/metabolism , Biological Transport , Biomass , Lactuca/growth & development , Phosphates/administration & dosage , Photosynthesis , Plant Roots/growth & development , Plant Roots/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Zinc/administration & dosage
17.
Front Plant Sci ; 4: 483, 2013.
Article in English | MEDLINE | ID: mdl-24348489

ABSTRACT

Water stresses reduce plant growth but there is no consensus on whether carbon metabolism has any role in this reduction. Sugar starvation resulting from stomatal closure is often proposed as a cause of growth impairment under long-term or severe water deficits. However, growth decreases faster than photosynthesis in response to drought, leading to increased carbohydrate stores under short-term or moderate water deficits. Here, we addressed the question of the role of carbon availability on growth under moderate water deficits using two different systems. Firstly, we monitored the day/night pattern of leaf growth in Arabidopsis plants. We show that a moderate soil water deficit promotes leaf growth at night in mutants severely disrupted in their nighttime carbohydrate availability. This suggests that soil water deficit promotes carbon satiation. Secondly, we monitored the sub-hourly growth variations of clementine fruits in response to daily, natural fluctuations in air water deficit, and at contrasting source-sink balances obtained by defoliation. We show that high carbohydrate levels prevent excessive, hydraulic shrinkage of the fruit during days with high evaporative demand, most probably through osmotic adjustment. Together, our results contribute to the view that growing organs under moderate soil or air water deficit are not carbon starved, but use soluble carbohydrate in excess to partly release a hydromechanical limitation of growth.

18.
Wiley Interdiscip Rev Dev Biol ; 2(6): 809-21, 2013.
Article in English | MEDLINE | ID: mdl-24123939

ABSTRACT

Leaves of flowering plants are produced from the shoot apical meristem at regular intervals and they grow according to a developmental program that is determined by both genetic and environmental factors. Detailed frameworks for multiscale dynamic analyses of leaf growth have been developed in order to identify and interpret phenotypic differences caused by either genetic or environmental variations. They revealed that leaf growth dynamics are non-linearly and nonhomogeneously distributed over the lamina, in the leaf tissues and cells. The analysis of the variability in leaf growth, and its underlying processes, has recently gained momentum with the development of automated phenotyping platforms that use various technologies to record growth at different scales and at high throughput. These modern tools are likely to accelerate the characterization of gene function and the processes that underlie the control of shoot development. Combined with powerful statistical analyses, trends have emerged that may have been overlooked in low throughput analyses. However, in many examples, the increase in throughput allowed by automated platforms has led to a decrease in the spatial and/or temporal resolution of growth analyses. Concrete examples presented here indicate that simplification of the dynamic leaf system, without consideration of its spatial and temporal context, can lead to important misinterpretations of the growth phenotype.


Subject(s)
Arabidopsis/growth & development , Meristem/growth & development , Phenotype , Plant Development , Plant Leaves/growth & development , Plant Shoots/growth & development , Arabidopsis/genetics , Arabidopsis/ultrastructure , Automation, Laboratory , Environment , Flowers/physiology , Genetic Heterogeneity , Genotype , Imaging, Three-Dimensional , Kinetics , Meristem/genetics , Meristem/ultrastructure , Molecular Imaging , Plant Leaves/genetics , Plant Leaves/ultrastructure , Plant Shoots/genetics , Plant Shoots/ultrastructure
19.
Plant Cell Environ ; 35(9): 1631-46, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22471732

ABSTRACT

Light and soil water content affect leaf surface area expansion through modifications in epidermal cell numbers and area, while effects on leaf thickness and mesophyll cell volumes are far less documented. Here, three-dimensional imaging was applied in a study of Arabidopsis thaliana leaf growth to determine leaf thickness and the cellular organization of mesophyll tissues under moderate soil water deficit and two cumulative light conditions. In contrast to surface area, thickness was highly conserved in response to water deficit under both low and high cumulative light regimes. Unlike epidermal and palisade mesophyll tissues, no reductions in cell number were observed in the spongy mesophyll; cells had rather changed in volume and shape. Furthermore, leaf features of a selection of genotypes affected in leaf functioning were analysed. The low-starch mutant pgm had very thick leaves because of unusually large palisade mesophyll cells, together with high levels of photosynthesis and stomatal conductance. By means of an open stomata mutant and a 9-cis-epoxycarotenoid dioxygenase overexpressor, it was shown that stomatal conductance does not necessarily have a major impact on leaf dimensions and cellular organization, pointing to additional mechanisms for the control of CO(2) diffusion under high and low stomatal conductance, respectively.


Subject(s)
Arabidopsis/anatomy & histology , Arabidopsis/growth & development , Environment , Imaging, Three-Dimensional/methods , Plant Leaves/anatomy & histology , Plant Leaves/growth & development , Arabidopsis/cytology , Arabidopsis/genetics , Biomechanical Phenomena/radiation effects , Cell Count , Cell Shape/radiation effects , Cell Size/radiation effects , Genotype , Humidity , Light , Mesophyll Cells/cytology , Mesophyll Cells/radiation effects , Mutation/genetics , Organ Specificity/radiation effects , Photosynthesis/radiation effects , Plant Leaves/genetics , Plant Leaves/radiation effects , Plant Stomata/anatomy & histology , Plant Stomata/physiology , Plant Stomata/radiation effects , Soil , Starch/metabolism , Water
20.
Plant Cell ; 24(2): 676-91, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22319053

ABSTRACT

RNA editing plays an important role in organelle gene expression in various organisms, including flowering plants, changing the nucleotide information at precise sites. Here, we present evidence that the maize (Zea mays) nuclear gene Pentatricopeptide repeat 2263 (PPR2263) encoding a DYW domain-containing PPR protein is required for RNA editing in the mitochondrial NADH dehydrogenase5 (nad5) and cytochrome b (cob) transcripts at the nad5-1550 and cob-908 sites, respectively. Its putative ortholog, MITOCHONDRIAL EDITING FACTOR29, fulfills the same role in Arabidopsis thaliana. Both the maize and the Arabidopsis proteins show preferential localization to mitochondria but are also detected in chloroplasts. In maize, the corresponding ppr2263 mutation causes growth defects in kernels and seedlings. Embryo and endosperm growth are reduced, leading to the production of small but viable kernels. Mutant plants have narrower and shorter leaves, exhibit a strong delay in flowering time, and generally do not reach sexual maturity. Whereas mutant chloroplasts do not have major defects, mutant mitochondria lack complex III and are characterized by a compromised ultrastructure, increased transcript levels, and the induction of alternative oxidase. The results suggest that mitochondrial RNA editing at the cob-908 site is necessary for mitochondrion biogenesis, cell division, and plant growth in maize.


Subject(s)
Cytochromes b/genetics , Mitochondrial Proteins/genetics , NADH Dehydrogenase/genetics , Plant Proteins/metabolism , RNA Editing , Zea mays/growth & development , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/growth & development , Chloroplasts/enzymology , Gene Expression Regulation, Plant , Microscopy, Electron, Transmission , Mitochondria/enzymology , Mitochondria/ultrastructure , Mitochondrial Proteins/metabolism , Molecular Sequence Data , Mutagenesis, Insertional , Oxidoreductases/metabolism , Phenotype , Plant Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , RNA, Plant/genetics , Seeds/growth & development , Zea mays/genetics , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...