Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Q Rev Biophys ; 57: e6, 2024 04 15.
Article in English | MEDLINE | ID: mdl-38619322

ABSTRACT

A revolution in chemical biology occurred with the introduction of click chemistry. Click chemistry plays an important role in protein chemistry modifications, providing specific, sensitive, rapid, and easy-to-handle methods. Under physiological conditions, click chemistry often overlaps with bioorthogonal chemistry, defined as reactions that occur rapidly and selectively without interfering with biological processes. Click chemistry is used for the posttranslational modification of proteins based on covalent bond formations. With the contribution of click reactions, selective modification of proteins would be developed, representing an alternative to other technologies in preparing new proteins or enzymes for studying specific protein functions in different biological processes. Click-modified proteins have potential in diverse applications such as imaging, labeling, sensing, drug design, and enzyme technology. Due to the promising role of proteins in disease diagnosis and therapy, this review aims to highlight the growing applications of click strategies in protein chemistry over the last two decades, with a special emphasis on medicinal applications.


Subject(s)
Click Chemistry , Drug Design , Product Labeling , Protein Processing, Post-Translational , Technology
2.
Mol Pharm ; 21(5): 2097-2117, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38440998

ABSTRACT

Currently, one of the most significant and rapidly growing unmet medical challenges is the treatment of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). This challenge encompasses the imperative development of efficacious therapeutic agents and overcoming the intricacies of the blood-brain barrier for successful drug delivery. Here we focus on the delivery aspect with particular emphasis on cell-penetrating peptides (CPPs), widely used in basic and translational research as they enhance drug delivery to challenging targets such as tissue and cellular compartments and thus increase therapeutic efficacy. The combination of CPPs with nanomaterials such as nanoparticles (NPs) improves the performance, accuracy, and stability of drug delivery and enables higher drug loads. Our review presents and discusses research that utilizes CPPs, either alone or in conjugation with NPs, to mitigate the pathogenic effects of neurodegenerative diseases with particular reference to AD and PD.


Subject(s)
Blood-Brain Barrier , Cell-Penetrating Peptides , Drug Delivery Systems , Nanoparticles , Neurodegenerative Diseases , Parkinson Disease , Cell-Penetrating Peptides/chemistry , Cell-Penetrating Peptides/administration & dosage , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Drug Delivery Systems/methods , Nanoparticles/chemistry , Neurodegenerative Diseases/drug therapy , Animals , Parkinson Disease/drug therapy , Alzheimer Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...