Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
J Mech Behav Biomed Mater ; 155: 106555, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38640693

ABSTRACT

Recently, the replication of biological microstructures has garnered significant attention due to their superior flexural strength and toughness, coupled with lightweight structures. Among the most intriguing biological microstructures renowned for their flexural strength are those found in the Euplectella Aspergillum (EA) marine sponges. The remarkable strength of this sponge is attributed to its complex microstructure, which consists of concentric cylindrical layers known as spicules with organic interlayers. These features effectively impede large crack propagation, imparting extraordinary mechanical properties. However, there have been limited studies aimed at mimicking the spicule microstructure. In this study, structures inspired by spicules were designed and fabricated using the stereolithography (SLA) 3D printing technique. The mechanical properties of concentric cylindrical structures (CCSs) inspired by the spicule microstructure were evaluated, considering factors such as the wall thickness of the cylinders, the number of layers, and core diameter, all of which significantly affect the mechanical response. These results were compared with those obtained from solid rods used as solid samples. The findings indicated that CCSs with five layers or fewer exhibited a flexural strength close to or higher than that of solid rods. Particularly, samples with 4 and 5 cylindrical layers displayed architecture similar to natural spicules. Moreover, in all CCSs, the absorbed energy was at least 3-4 times higher than solid rods. Conversely, CCSs with a cylinder wall thickness of 0.65 mm exhibited a more brittle behavior under the 3-point bending test than those with 0.35 mm and 0.5 mm wall thicknesses. CCSs demonstrated greater resistance to failure, displaying different crack propagation patterns and shear stress distributions under the bending test compared to solid rods. These results underscore that replicating the structure of spicules and producing structures with concentric cylindrical layers can transform a brittle structure into a more flexible one, particularly in load-bearing applications.


Subject(s)
Porifera , Printing, Three-Dimensional , Porifera/physiology , Animals , Stereolithography , Biomimetic Materials/chemistry , Mechanical Phenomena , Materials Testing
2.
Materials (Basel) ; 13(21)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143317

ABSTRACT

Pure nanocrystalline akermanite (Ca2MgSi2O7) powder was synthesized by mechanical activation with subsequent annealing of talc, calcium carbonate, and silicate powders as the initial materials. Powder samples were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) techniques. The results showed that pure nanocrystalline akermanite with a crystalline size of 35 nm was synthesized after ball milling the initial powders for 20 h with subsequent annealing at 900 °C for 1 h. Mechanical properties of bulk akermanite samples were studied as well. The results showed that the produced akermanite tablets sintered at 1200 °C for 5 h had a Young's modulus of 3800 MPa, an ultimate compressive strength of 24.7 MPa, and a density of 2.489 g/cm3. The in-vitro behavior of the produced akermanite was evaluated by soaking the samples in an SBF solution. The results showed that the produced akermanite had the apatite formation ability on its surface and can be a good candidate for bone tissue engineering applications.

3.
Sci Rep ; 9(1): 7474, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31097757

ABSTRACT

Self-healing materials with the ability to partially or completely restore their mechanical properties by healing the damage inflicted on them have great potential for applications where there is no or only limited access available to conduct a repair. Here, we demonstrate a bio-inspired new design for self-healing materials, where unit cells embedded in the structure are filled with a UV-curable resin and act as reservoirs for the self-healing agent. This design makes the repeated healing of mechanical damage possible. When a crack propagates and reaches one of these embedded reservoirs, the healing agent is released into the crack plane through the capillary action, and after polymerization through UV light exposure, bonds the crack faces. The structures here were fabricated using a stereolithography technique by a layer-by-layer deposition of the material. "Resin trapping" as a unique integration technique is developed for the first time to expand the capability of additive manufacturing technique for creating components with broader functionalities. The self-healing materials were manufactured in one step without any needs for any sequential stages, i.e. filling the reservoir with the healing agent, in contrast with the previously reported self-healing materials. Multiscale mechanical tests such as nanoindentation and three-point bending confirm the efficiency of our method.

4.
Nanotechnology ; 30(18): 185703, 2019 May 03.
Article in English | MEDLINE | ID: mdl-30630140

ABSTRACT

The superior intrinsic mechanical properties of graphene have been widely studied and utilized to enhance the mechanical properties of various composite materials. However, it is still unclear how heterostructures incorporating graphene behave, and to what extent graphene influences their mechanical response. In this work, a series of graphene/Al2O3 composite films were fabricated via atomic layer deposition of Al2O3 on graphene, and their mechanical behavior was studied using an experimental-computational approach. The inclusion of monolayer chemical vapor deposited graphene between ultrathin Al2O3 films (1.5-4.5 nm thickness) was found to enhance the overall stiffness by as much as 70% compared to a pure Al2O3 film of similar thickness (∼150 GPa to ∼250 GPa). Here, for the first time, the combination of graphene and Al2O3 in vertically-stacked heterostructures results in advanced hybrid films of unprecedented mechanical stiffness that also possess qualities desirable for graphene-based transistors and flexible electronics.

5.
Nanotechnology ; 28(29): 295701, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28557804

ABSTRACT

Many applications of graphene can benefit from the enhanced mechanical robustness of graphene-based components. We report how the stiffness of vertical graphene (VG) sheets is affected by the introduction of defects and fluorination, both separately and combined. The defects were created using a high-energy ion beam while fluorination was performed in a XeF2 etching system. After ion bombardment alone, the average effective reduced modulus (E r), equal to ∼4.9 MPa for the as-grown VG sheets, approximately doubled to ∼10.0 MPa, while fluorination alone almost quadrupled it to ∼18.4 MPa. The maximum average E r of ∼32.4 MPa was achieved by repeatedly applying fluorination and ion bombardment. This increase can be explained by the formation of covalent bonds between the VG sheets due to ion bombardment, as well as the conversion from sp2 to sp3 and increased corrugation due to fluorination.

6.
Nanotechnology ; 27(15): 155701, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26926386

ABSTRACT

We report the fabrication and characterization of graphene nanostructures with mechanical properties that are tuned by conformal deposition of alumina. Vertical graphene (VG) sheets, also called carbon nanowalls (CNWs), were grown on copper foil substrates using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique and conformally coated with different thicknesses of alumina (Al2O3) using atomic layer deposition (ALD). Nanoindentation was used to characterize the mechanical properties of pristine and alumina-coated VG sheets. Results show a significant increase in the effective Young's modulus of the VG sheets with increasing thickness of deposited alumina. Deposition of only a 5 nm thick alumina layer on the VG sheets nearly triples the effective Young's modulus of the VG structures. Both energy absorption and strain recovery were lower in VG sheets coated with alumina than in pure VG sheets (for the same peak force). This may be attributed to the increase in bending stiffness of the VG sheets and the creation of connections between the sheets after ALD deposition. These results demonstrate that the mechanical properties of VG sheets can be tuned over a wide range through conformal atomic layer deposition, facilitating the use of VG sheets in applications where specific mechanical properties are needed.

7.
Nat Commun ; 6: 10019, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26632595

ABSTRACT

Unusual mechanical properties of mechanical metamaterials are determined by their carefully designed and tightly controlled geometry at the macro- or nanoscale. We introduce a class of nanoscale mechanical metamaterials created by forming continuous corrugated plates out of ultrathin films. Using a periodic three-dimensional architecture characteristic of mechanical metamaterials, we fabricate free-standing plates up to 2 cm in size out of aluminium oxide films as thin as 25 nm. The plates are formed by atomic layer deposition of ultrathin alumina films on a lithographically patterned silicon wafer, followed by complete removal of the silicon substrate. Unlike unpatterned ultrathin films, which tend to warp or even roll up because of residual stress gradients, our plate metamaterials can be engineered to be extremely flat. They weigh as little as 0.1 g cm(-2) and have the ability to 'pop-back' to their original shape without damage even after undergoing multiple sharp bends of more than 90°.

8.
Phys Chem Chem Phys ; 16(41): 22687-93, 2014 Nov 07.
Article in English | MEDLINE | ID: mdl-25230829

ABSTRACT

The electronic and photoconductive characteristics of CdTe nanowire-based field effect transistors were studied systematically. The electrical characterization of a single CdTe nanowire FET verifies p-type behavior. The CdTe NW FETs respond to visible-near infrared (400-800 nm) incident light with a fast, reversible and stable response characterized by a high responsivity (81 A W(-1)), photoconductive gain (∼2.5 × 10(4)%) and reasonable response and decay times (0.7 s and 1 s, respectively). These results substantiate the potential of CdTe nanowire-based photodetectors in optoelectronic applications.


Subject(s)
Cadmium Compounds/chemistry , Nanowires/chemistry , Tellurium/chemistry , Transistors, Electronic , Electric Conductivity , Infrared Rays , Light
9.
Nanoscale ; 5(3): 932-5, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23299660

ABSTRACT

Bandgap engineering of single-crystalline alloy Cd(x)Zn(1-x)Te (0 ≤ x ≤ 1) nanowires is achieved successfully through control of growth temperature and a two zone source system in a vapor-liquid-solid process. Extensive characterization using electron microscopy, Raman spectroscopy and photoluminescence shows highly crystalline alloy nanowires with precise tuning of the bandgap. It is well known that bulk Cd(x)Zn(1-x)Te is popular for construction of radiation detectors and availability of a nanowire form of this material would help to improve detection sensitivity and miniaturization. This is a step forward towards the accomplishment of tunable and predetermined bandgap emissions for various applications.


Subject(s)
Cadmium Compounds/chemical synthesis , Crystallization/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Zinc/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties , Tellurium , Temperature
10.
Nanoscale ; 4(3): 897-903, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22173853

ABSTRACT

One-dimensional nanostructures such as ZnTe, CdTe, Bi(2)Te(3) and others have attracted much attention in recent years for their potential in thermoelectric devices among other applications. A better understanding of their mechanical properties is important for the design of devices. A combined experimental and computational approach has been used here to investigate the size effects on the Young's modulus of ZnTe nanowires (NWs). The mechanical properties of individual ZnTe nanowires in a wide diameter range (50-230 nm) were experimentally measured inside a high resolution transmission electron microscope using an atomic force microscope probe with the ability to record in situ continuous force-displacement curves. The in situ observations showed that ZnTe NWs are flexible nanostructures with the ability to withstand relatively high buckling forces without becoming fractured. The Young's modulus is found to be independent of nanowire diameter in the investigated range, in contrast to reported results for ZnO NWs and carbon nanotubes where the modulus increases with a decrease in diameter. Molecular dynamics simulations performed for nanowires with diameters less than 20 nm show limited size dependence for diameters smaller than 5 nm. The surface atoms present lower Young's modulus according to the simulations and the limited size dependency of the cylindrical ZnTe NWs is attributed to the short range covalent interactions.

11.
Chemphyschem ; 13(1): 347-52, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22131283

ABSTRACT

As the applications for inorganic nanowires continuously grow, studies on the stability of these structures under high electrical/thermal stress conditions are needed. ZnTe nanowires are grown by the vapor-liquid-solid technique and their breakdown under Joule heating is studied through in situ monitoring in a transmission electron microscope (TEM). The experimental setup, consisting of a scanning tunneling microscope (STM) and a movable piezotube inside the TEM, allows the manipulation of a single nanowire. A voltage applied to the STM tip in contact with a ZnTe nanowire leads to the breakdown of the nanowire into Zn and Te particles or balls which is observed in real time. These balls grow by Ostwald ripening, rendering the surface morphology of the ZnTe nanowire progressively rough. Diffraction patterns along the stem of the wire after the partial breakdown showed substantially smaller lattice spacing compared to 0.35 nm for pristine ZnTe nanowires.

12.
Nanotechnology ; 22(43): 435204, 2011 Oct 28.
Article in English | MEDLINE | ID: mdl-21971180

ABSTRACT

We report growth and characterization of CdTe wires 30­400 nm in diameter by the vapor­liquid­solid technique. Individual nanowires were placed on a movable piezotube, which allowed three-dimensional motion toward a scanning tunneling microscope (STM). A bias was applied to the STM tip in contact with the nanowire, and the morphological changes due to Joule heating were observed in situ using a transmission electron microscope (TEM) in real time. For thick CdTe wires (d > ~150 nm), the process results in the growth of superfine nanowires (SFNWs) of 2­4 nm diameter on the surface of the wire. Smaller diameter nanowires, in contrast, disintegrate under the applied bias before the complete evolution of SFNWs on the surface.

SELECTION OF CITATIONS
SEARCH DETAIL