Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Med (Lausanne) ; 10: 1195026, 2023.
Article in English | MEDLINE | ID: mdl-37915327

ABSTRACT

Background: Correlative interactions between electrical charges and cancer cells involve important unknown factors in cancer diagnosis and treatment. We previously reported the intrinsic suppressive effects of pure positive electrostatic charges (PEC) on the proliferation and metabolism of invasive cancer cells without any effect on normal cells in cell lines and animal models. The proposed mechanism was the suppression of pro-caspases 3 and 9 with an increase in Bax/Bcl2 ratio in exposed malignant cells and perturbation induced in the KRAS pathway of malignant cells by electrostatic charges due to the phosphate molecule electrostatic charge as the trigger of the pathway. This study aimed to examine PECs as a complementary treatment for patients with different types of solid metastatic tumors, who showed resistance to chemotherapy and radiotherapy. Methods: In this study, solid metastatic tumors of the end-stage patients (n = 41) with various types of cancers were locally exposed to PEC for at least one course of 12 days. The patient's signs and symptoms, the changes in their tumor size, and serum markers were followed up from 30 days before positive electrostatic charge treating (PECT) until 6 months after the study. Results: Entirely, 36 patients completed the related follow-ups. Significant reduction in tumor sizes and cancer-associated enzymes as well as improvement in cancer-related signs and symptoms and patients' lifestyles, without any side effects on other tissues or metabolisms of the body, were observed in more than 80% of the candidates. Conclusion: PECT induced significant cancer remission in combination with other therapies. Therefore, this non-ionizing radiation would be a beneficial complementary therapy, with no observable side effects of ionizing radiotherapy, such as post-radiation inflammation.

2.
Macromol Biosci ; 23(9): e2300181, 2023 09.
Article in English | MEDLINE | ID: mdl-37399543

ABSTRACT

Pure positive electrostatic charges (PPECs) show suppressive effect on the proliferation and metabolism of invasive cancer cells without affecting normal tissues. PPECs are used for the delivery of drug-loaded polymeric nanoparticles (DLNs) capped with negatively charged poly(lactide-co-glycolide) (PLGA) and Poly(vinyl-alcohol) PVA into the tumor site of mouse models. The charged patch is installed on top of the skin in the mouse models' tumor region, and the controlled selective release of the drug is assayed by biochemical, radiological, and histological experiments on both tumorized models and normal rats' livers. It is found that DLNs synthesized by PLGA show great attraction to PPECs due to their stable negative charges, which would not degrade immediately in blood. The burst and drug release after less than 48h of this synthesized DLNs are 10% and 50%, respectively. These compounds can deliver the loaded-drug into the tumor site with the assistance of PPECs, and the targeted-retarded release will take place. Hence, local therapy can be achieved with much lower drug concentration (conventional chemotherapy [2 mg kg-1 ] versus DLNs-based chemotherapy [0.75 mg kg-1 ]) with negligible side effects in non-targeted organs. PPECs have many potential clinical applications for advanced-targeted chemotherapy with the lowest discernible side effects.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Mice , Rats , Animals , Drug Delivery Systems , Polylactic Acid-Polyglycolic Acid Copolymer/metabolism , Static Electricity , Antineoplastic Agents/chemistry , Polymers/therapeutic use , Neoplasms/drug therapy , Nanoparticles/chemistry , Drug Carriers/chemistry , Drug Liberation
SELECTION OF CITATIONS
SEARCH DETAIL
...